remove unused command
Browse files
README.md
CHANGED
@@ -56,8 +56,8 @@ example = " ".join(word_tokenize(example))
|
|
56 |
# feed to the NER model to parse
|
57 |
ner_results = nlp(example)
|
58 |
|
59 |
-
# as the [grouped_entities] parameter does not perform well
|
60 |
-
# we prepared a simple fixing code to generate
|
61 |
|
62 |
grouped_ner_results = defaultdict(list)
|
63 |
fixed_ner_results = []
|
@@ -70,7 +70,6 @@ for group, ents in grouped_ner_results.items():
|
|
70 |
fixed_ner_results.append(ents[0])
|
71 |
continue
|
72 |
|
73 |
-
last_ent, last_start, last_end = ents[0]['word'], ents[0]['start'], ents[0]['end']
|
74 |
current_ent = {"word": ents[0]['word'], "start": ents[0]['start'], "end": ents[0]['end'], "entity_group": group, "score": ents[0]['score']}
|
75 |
for i in range(1, len(ents)):
|
76 |
if ents[i]['start'] == current_ent["end"]:
|
|
|
56 |
# feed to the NER model to parse
|
57 |
ner_results = nlp(example)
|
58 |
|
59 |
+
# as the [grouped_entities] parameter does not perform well in Arabic,
|
60 |
+
# we prepared a simple fixing code to generate full entities tokens
|
61 |
|
62 |
grouped_ner_results = defaultdict(list)
|
63 |
fixed_ner_results = []
|
|
|
70 |
fixed_ner_results.append(ents[0])
|
71 |
continue
|
72 |
|
|
|
73 |
current_ent = {"word": ents[0]['word'], "start": ents[0]['start'], "end": ents[0]['end'], "entity_group": group, "score": ents[0]['score']}
|
74 |
for i in range(1, len(ents)):
|
75 |
if ents[i]['start'] == current_ent["end"]:
|