marconilab
commited on
End of training
Browse files- README.md +98 -196
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,199 +1,101 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-xls-r-300m
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-large-xls-r-300m-grain
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-large-xls-r-300m-grain
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.1510
|
21 |
+
- Wer: 0.0762
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0003
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 500
|
47 |
+
- num_epochs: 100
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
54 |
+
| 4.1496 | 2.5 | 400 | 0.7656 | 0.8096 |
|
55 |
+
| 0.2914 | 5.0 | 800 | 0.3202 | 0.3544 |
|
56 |
+
| 0.1152 | 7.5 | 1200 | 0.2666 | 0.2894 |
|
57 |
+
| 0.0722 | 10.0 | 1600 | 0.2834 | 0.2458 |
|
58 |
+
| 0.0528 | 12.5 | 2000 | 0.2475 | 0.2159 |
|
59 |
+
| 0.0423 | 15.0 | 2400 | 0.2430 | 0.1971 |
|
60 |
+
| 0.0334 | 17.5 | 2800 | 0.2250 | 0.1925 |
|
61 |
+
| 0.0288 | 20.0 | 3200 | 0.2119 | 0.1779 |
|
62 |
+
| 0.0253 | 22.5 | 3600 | 0.2226 | 0.1711 |
|
63 |
+
| 0.0214 | 25.0 | 4000 | 0.2224 | 0.1685 |
|
64 |
+
| 0.0217 | 27.5 | 4400 | 0.2098 | 0.1516 |
|
65 |
+
| 0.0182 | 30.0 | 4800 | 0.2153 | 0.1716 |
|
66 |
+
| 0.0173 | 32.5 | 5200 | 0.1925 | 0.1451 |
|
67 |
+
| 0.0137 | 35.0 | 5600 | 0.2241 | 0.1469 |
|
68 |
+
| 0.0118 | 37.5 | 6000 | 0.2013 | 0.1515 |
|
69 |
+
| 0.0133 | 40.0 | 6400 | 0.1990 | 0.1332 |
|
70 |
+
| 0.0125 | 42.5 | 6800 | 0.2146 | 0.1502 |
|
71 |
+
| 0.0103 | 45.0 | 7200 | 0.2191 | 0.1317 |
|
72 |
+
| 0.0089 | 47.5 | 7600 | 0.1869 | 0.1246 |
|
73 |
+
| 0.0091 | 50.0 | 8000 | 0.1734 | 0.1251 |
|
74 |
+
| 0.008 | 52.5 | 8400 | 0.2008 | 0.1290 |
|
75 |
+
| 0.0071 | 55.0 | 8800 | 0.1828 | 0.1260 |
|
76 |
+
| 0.0064 | 57.5 | 9200 | 0.1689 | 0.1081 |
|
77 |
+
| 0.0061 | 60.0 | 9600 | 0.1676 | 0.1111 |
|
78 |
+
| 0.0051 | 62.5 | 10000 | 0.1707 | 0.1048 |
|
79 |
+
| 0.0056 | 65.0 | 10400 | 0.1741 | 0.1131 |
|
80 |
+
| 0.0046 | 67.5 | 10800 | 0.1836 | 0.1034 |
|
81 |
+
| 0.0036 | 70.0 | 11200 | 0.1655 | 0.0966 |
|
82 |
+
| 0.0037 | 72.5 | 11600 | 0.1734 | 0.1047 |
|
83 |
+
| 0.003 | 75.0 | 12000 | 0.1718 | 0.0975 |
|
84 |
+
| 0.0032 | 77.5 | 12400 | 0.1598 | 0.0986 |
|
85 |
+
| 0.0023 | 80.0 | 12800 | 0.1640 | 0.0966 |
|
86 |
+
| 0.0019 | 82.5 | 13200 | 0.1701 | 0.0862 |
|
87 |
+
| 0.0015 | 85.0 | 13600 | 0.1643 | 0.0854 |
|
88 |
+
| 0.0016 | 87.5 | 14000 | 0.1470 | 0.0823 |
|
89 |
+
| 0.0014 | 90.0 | 14400 | 0.1589 | 0.0838 |
|
90 |
+
| 0.0011 | 92.5 | 14800 | 0.1610 | 0.0834 |
|
91 |
+
| 0.0013 | 95.0 | 15200 | 0.1457 | 0.0788 |
|
92 |
+
| 0.001 | 97.5 | 15600 | 0.1537 | 0.0762 |
|
93 |
+
| 0.001 | 100.0 | 16000 | 0.1510 | 0.0762 |
|
94 |
+
|
95 |
+
|
96 |
+
### Framework versions
|
97 |
+
|
98 |
+
- Transformers 4.42.3
|
99 |
+
- Pytorch 2.2.0+cu121
|
100 |
+
- Datasets 2.20.0
|
101 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1261934580
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ec884978c8fcd13573427393207036b2c517a4d0af35c2948e7a3a5a542223b
|
3 |
size 1261934580
|