File size: 1,920 Bytes
6ea4d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b66059e
6ea4d65
 
 
 
 
 
 
 
 
b66059e
 
6ea4d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b66059e
 
6ea4d65
b66059e
 
6ea4d65
 
 
 
 
 
 
 
 
b66059e
 
 
6ea4d65
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: facebook/dinov2-base
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: dinov2-base-finetuned-oxford
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9299317110705011
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dinov2-base-finetuned-oxford

This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2714
- Accuracy: 0.9299

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 9
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.6782        | 1.0   | 15460 | 0.4996          | 0.8013   |
| 0.4513        | 2.0   | 30920 | 0.3186          | 0.8837   |
| 0.2692        | 3.0   | 46380 | 0.2714          | 0.9299   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.19.1