manandey commited on
Commit
3868fa6
·
1 Parent(s): ddf0b61

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -49,15 +49,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
49
  # Preprocessing the datasets.
50
  # We need to read the aduio files as arrays
51
  def speech_file_to_array_fn(batch):
52
- \\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
53
- \\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
54
- \\\\\\\\treturn batch
55
 
56
  test_dataset = test_dataset.map(speech_file_to_array_fn)
57
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
58
 
59
  with torch.no_grad():
60
- \\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
 
62
  predicted_ids = torch.argmax(logits, dim=-1)
63
 
@@ -85,30 +85,30 @@ processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-mong
85
  model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-mongolian")
86
  model.to("cuda")
87
 
88
- chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“\\\\\\\\%\\\\\\\\‘\\\\\\\\”\\\\\\\\�\\\\\\\\’\\\\\\\\–\\\\\\\\(\\\\\\\\)]'
89
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
90
 
91
  # Preprocessing the datasets.
92
  # We need to read the aduio files as arrays
93
  def speech_file_to_array_fn(batch):
94
- \\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
95
- \\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
96
- \\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
97
- \\\\\\\\treturn batch
98
 
99
  test_dataset = test_dataset.map(speech_file_to_array_fn)
100
 
101
  # Preprocessing the datasets.
102
  # We need to read the aduio files as arrays
103
  def evaluate(batch):
104
- \\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
105
 
106
- \\\\\\\\twith torch.no_grad():
107
- \\\\\\\\t\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
108
 
109
  pred_ids = torch.argmax(logits, dim=-1)
110
- \\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
111
- \\\\\\\\treturn batch
112
 
113
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
114
 
 
49
  # Preprocessing the datasets.
50
  # We need to read the aduio files as arrays
51
  def speech_file_to_array_fn(batch):
52
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
53
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
54
+ return batch
55
 
56
  test_dataset = test_dataset.map(speech_file_to_array_fn)
57
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
58
 
59
  with torch.no_grad():
60
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
 
62
  predicted_ids = torch.argmax(logits, dim=-1)
63
 
 
85
  model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-mongolian")
86
  model.to("cuda")
87
 
88
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\–\(\)]'
89
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
90
 
91
  # Preprocessing the datasets.
92
  # We need to read the aduio files as arrays
93
  def speech_file_to_array_fn(batch):
94
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
95
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
96
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
97
+ return batch
98
 
99
  test_dataset = test_dataset.map(speech_file_to_array_fn)
100
 
101
  # Preprocessing the datasets.
102
  # We need to read the aduio files as arrays
103
  def evaluate(batch):
104
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
105
 
106
+ with torch.no_grad():
107
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
108
 
109
  pred_ids = torch.argmax(logits, dim=-1)
110
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
111
+ return batch
112
 
113
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
114