--- library_name: peft license: llama3 base_model: NousResearch/Hermes-2-Pro-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: 5c36bf90-833a-4aa9-996b-95dea707aa90 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-2-Pro-Llama-3-8B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2c8471314b8a0c63_train_data.json ds_type: json format: custom path: /workspace/input_data/2c8471314b8a0c63_train_data.json type: field_input: system_prompt field_instruction: question field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: mamung/5c36bf90-833a-4aa9-996b-95dea707aa90 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/2c8471314b8a0c63_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: eddysang wandb_mode: online wandb_name: b65ca8ff-43e8-484e-8f53-74e813eec32e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b65ca8ff-43e8-484e-8f53-74e813eec32e warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ```

# 5c36bf90-833a-4aa9-996b-95dea707aa90 This model is a fine-tuned version of [NousResearch/Hermes-2-Pro-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 0.9038 | | 0.6819 | 0.0033 | 9 | 0.5947 | | 0.4973 | 0.0066 | 18 | 0.4754 | | 0.4304 | 0.0100 | 27 | 0.4488 | | 0.4413 | 0.0133 | 36 | 0.4356 | | 0.4426 | 0.0166 | 45 | 0.4266 | | 0.4388 | 0.0199 | 54 | 0.4211 | | 0.4012 | 0.0233 | 63 | 0.4166 | | 0.4188 | 0.0266 | 72 | 0.4133 | | 0.4367 | 0.0299 | 81 | 0.4112 | | 0.4213 | 0.0332 | 90 | 0.4101 | | 0.4019 | 0.0365 | 99 | 0.4098 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1