--- datasets: - yahma/alpaca-cleaned language: - en --- # Model Card for Model ID malhajar/phi-2-chat is a finetuned version of [`phi-2`]( https://huggingface.co/microsoft/phi-2) using SFT Training. This model can answer information in a chat format as it is finetuned specifically on instructions specifically [`alpaca-cleaned`]( https://huggingface.co/datasets/yahma/alpaca-cleaned) ### Model Description - **Developed by:** [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/) - **Language(s) (NLP):** Turkish - **Finetuned from model:** [`microsoft/phi-2`](https://huggingface.co/microsoft/phi-2) ### Prompt Template ``` ### Instruction: (without the <>) ### Response: ``` ## How to Get Started with the Model Use the code sample provided in the original post to interact with the model. ```python from transformers import AutoTokenizer,AutoModelForCausalLM model_id = "malhajar/phi-2-chat" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.float16, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_id) question: "Türkiyenin en büyük şehir nedir?" # For generating a response prompt = ''' ### Instruction: {question} ### Response: ''' input_ids = tokenizer(prompt, return_tensors="pt").input_ids output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,repetition_penalty=1.3 top_p=0.95,trust_remote_code=True,) response = tokenizer.decode(output[0]) print(response) ```