makiart commited on
Commit
9894845
·
verified ·
1 Parent(s): b9e9227

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:557850
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: FacebookAI/roberta-base
12
+ widget:
13
+ - source_sentence: A man is jumping unto his filthy bed.
14
+ sentences:
15
+ - A young male is looking at a newspaper while 2 females walks past him.
16
+ - The bed is dirty.
17
+ - The man is on the moon.
18
+ - source_sentence: A carefully balanced male stands on one foot near a clean ocean
19
+ beach area.
20
+ sentences:
21
+ - A man is ouside near the beach.
22
+ - Three policemen patrol the streets on bikes
23
+ - A man is sitting on his couch.
24
+ - source_sentence: The man is wearing a blue shirt.
25
+ sentences:
26
+ - Near the trashcan the man stood and smoked
27
+ - A man in a blue shirt leans on a wall beside a road with a blue van and red car
28
+ with water in the background.
29
+ - A man in a black shirt is playing a guitar.
30
+ - source_sentence: The girls are outdoors.
31
+ sentences:
32
+ - Two girls riding on an amusement part ride.
33
+ - a guy laughs while doing laundry
34
+ - Three girls are standing together in a room, one is listening, one is writing
35
+ on a wall and the third is talking to them.
36
+ - source_sentence: A construction worker peeking out of a manhole while his coworker
37
+ sits on the sidewalk smiling.
38
+ sentences:
39
+ - A worker is looking out of a manhole.
40
+ - A man is giving a presentation.
41
+ - The workers are both inside the manhole.
42
+ datasets:
43
+ - sentence-transformers/all-nli
44
+ pipeline_tag: sentence-similarity
45
+ library_name: sentence-transformers
46
+ metrics:
47
+ - cosine_accuracy
48
+ model-index:
49
+ - name: SentenceTransformer based on FacebookAI/roberta-base
50
+ results:
51
+ - task:
52
+ type: triplet
53
+ name: Triplet
54
+ dataset:
55
+ name: all nli dev
56
+ type: all-nli-dev
57
+ metrics:
58
+ - type: cosine_accuracy
59
+ value: 0.8985419198055893
60
+ name: Cosine Accuracy
61
+ ---
62
+
63
+ # SentenceTransformer based on FacebookAI/roberta-base
64
+
65
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
66
+
67
+ ## Model Details
68
+
69
+ ### Model Description
70
+ - **Model Type:** Sentence Transformer
71
+ - **Base model:** [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) <!-- at revision e2da8e2f811d1448a5b465c236feacd80ffbac7b -->
72
+ - **Maximum Sequence Length:** 512 tokens
73
+ - **Output Dimensionality:** 768 dimensions
74
+ - **Similarity Function:** Cosine Similarity
75
+ - **Training Dataset:**
76
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
77
+ - **Language:** en
78
+ <!-- - **License:** Unknown -->
79
+
80
+ ### Model Sources
81
+
82
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
83
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
84
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
85
+
86
+ ### Full Model Architecture
87
+
88
+ ```
89
+ SentenceTransformer(
90
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
91
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
92
+ )
93
+ ```
94
+
95
+ ## Usage
96
+
97
+ ### Direct Usage (Sentence Transformers)
98
+
99
+ First install the Sentence Transformers library:
100
+
101
+ ```bash
102
+ pip install -U sentence-transformers
103
+ ```
104
+
105
+ Then you can load this model and run inference.
106
+ ```python
107
+ from sentence_transformers import SentenceTransformer
108
+
109
+ # Download from the 🤗 Hub
110
+ model = SentenceTransformer("makiart/roberta-base-ft-all-nli")
111
+ # Run inference
112
+ sentences = [
113
+ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
114
+ 'A worker is looking out of a manhole.',
115
+ 'The workers are both inside the manhole.',
116
+ ]
117
+ embeddings = model.encode(sentences)
118
+ print(embeddings.shape)
119
+ # [3, 768]
120
+
121
+ # Get the similarity scores for the embeddings
122
+ similarities = model.similarity(embeddings, embeddings)
123
+ print(similarities.shape)
124
+ # [3, 3]
125
+ ```
126
+
127
+ <!--
128
+ ### Direct Usage (Transformers)
129
+
130
+ <details><summary>Click to see the direct usage in Transformers</summary>
131
+
132
+ </details>
133
+ -->
134
+
135
+ <!--
136
+ ### Downstream Usage (Sentence Transformers)
137
+
138
+ You can finetune this model on your own dataset.
139
+
140
+ <details><summary>Click to expand</summary>
141
+
142
+ </details>
143
+ -->
144
+
145
+ <!--
146
+ ### Out-of-Scope Use
147
+
148
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
149
+ -->
150
+
151
+ ## Evaluation
152
+
153
+ ### Metrics
154
+
155
+ #### Triplet
156
+
157
+ * Dataset: `all-nli-dev`
158
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
159
+
160
+ | Metric | Value |
161
+ |:--------------------|:-----------|
162
+ | **cosine_accuracy** | **0.8985** |
163
+
164
+ <!--
165
+ ## Bias, Risks and Limitations
166
+
167
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
168
+ -->
169
+
170
+ <!--
171
+ ### Recommendations
172
+
173
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
174
+ -->
175
+
176
+ ## Training Details
177
+
178
+ ### Training Dataset
179
+
180
+ #### all-nli
181
+
182
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
183
+ * Size: 557,850 training samples
184
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
185
+ * Approximate statistics based on the first 1000 samples:
186
+ | | anchor | positive | negative |
187
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
188
+ | type | string | string | string |
189
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
190
+ * Samples:
191
+ | anchor | positive | negative |
192
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
193
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
194
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
195
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
196
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
197
+ ```json
198
+ {
199
+ "scale": 20.0,
200
+ "similarity_fct": "cos_sim"
201
+ }
202
+ ```
203
+
204
+ ### Evaluation Dataset
205
+
206
+ #### all-nli
207
+
208
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
209
+ * Size: 6,584 evaluation samples
210
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
211
+ * Approximate statistics based on the first 1000 samples:
212
+ | | anchor | positive | negative |
213
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
214
+ | type | string | string | string |
215
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.02 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.81 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.37 tokens</li><li>max: 29 tokens</li></ul> |
216
+ * Samples:
217
+ | anchor | positive | negative |
218
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
219
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
220
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
221
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
222
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
223
+ ```json
224
+ {
225
+ "scale": 20.0,
226
+ "similarity_fct": "cos_sim"
227
+ }
228
+ ```
229
+
230
+ ### Training Hyperparameters
231
+ #### Non-Default Hyperparameters
232
+
233
+ - `eval_strategy`: steps
234
+ - `per_device_train_batch_size`: 64
235
+ - `per_device_eval_batch_size`: 64
236
+ - `num_train_epochs`: 1
237
+ - `warmup_ratio`: 0.1
238
+ - `fp16`: True
239
+ - `batch_sampler`: no_duplicates
240
+
241
+ #### All Hyperparameters
242
+ <details><summary>Click to expand</summary>
243
+
244
+ - `overwrite_output_dir`: False
245
+ - `do_predict`: False
246
+ - `eval_strategy`: steps
247
+ - `prediction_loss_only`: True
248
+ - `per_device_train_batch_size`: 64
249
+ - `per_device_eval_batch_size`: 64
250
+ - `per_gpu_train_batch_size`: None
251
+ - `per_gpu_eval_batch_size`: None
252
+ - `gradient_accumulation_steps`: 1
253
+ - `eval_accumulation_steps`: None
254
+ - `torch_empty_cache_steps`: None
255
+ - `learning_rate`: 5e-05
256
+ - `weight_decay`: 0.0
257
+ - `adam_beta1`: 0.9
258
+ - `adam_beta2`: 0.999
259
+ - `adam_epsilon`: 1e-08
260
+ - `max_grad_norm`: 1.0
261
+ - `num_train_epochs`: 1
262
+ - `max_steps`: -1
263
+ - `lr_scheduler_type`: linear
264
+ - `lr_scheduler_kwargs`: {}
265
+ - `warmup_ratio`: 0.1
266
+ - `warmup_steps`: 0
267
+ - `log_level`: passive
268
+ - `log_level_replica`: warning
269
+ - `log_on_each_node`: True
270
+ - `logging_nan_inf_filter`: True
271
+ - `save_safetensors`: True
272
+ - `save_on_each_node`: False
273
+ - `save_only_model`: False
274
+ - `restore_callback_states_from_checkpoint`: False
275
+ - `no_cuda`: False
276
+ - `use_cpu`: False
277
+ - `use_mps_device`: False
278
+ - `seed`: 42
279
+ - `data_seed`: None
280
+ - `jit_mode_eval`: False
281
+ - `use_ipex`: False
282
+ - `bf16`: False
283
+ - `fp16`: True
284
+ - `fp16_opt_level`: O1
285
+ - `half_precision_backend`: auto
286
+ - `bf16_full_eval`: False
287
+ - `fp16_full_eval`: False
288
+ - `tf32`: None
289
+ - `local_rank`: 0
290
+ - `ddp_backend`: None
291
+ - `tpu_num_cores`: None
292
+ - `tpu_metrics_debug`: False
293
+ - `debug`: []
294
+ - `dataloader_drop_last`: False
295
+ - `dataloader_num_workers`: 0
296
+ - `dataloader_prefetch_factor`: None
297
+ - `past_index`: -1
298
+ - `disable_tqdm`: False
299
+ - `remove_unused_columns`: True
300
+ - `label_names`: None
301
+ - `load_best_model_at_end`: False
302
+ - `ignore_data_skip`: False
303
+ - `fsdp`: []
304
+ - `fsdp_min_num_params`: 0
305
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
306
+ - `fsdp_transformer_layer_cls_to_wrap`: None
307
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
308
+ - `deepspeed`: None
309
+ - `label_smoothing_factor`: 0.0
310
+ - `optim`: adamw_torch
311
+ - `optim_args`: None
312
+ - `adafactor`: False
313
+ - `group_by_length`: False
314
+ - `length_column_name`: length
315
+ - `ddp_find_unused_parameters`: None
316
+ - `ddp_bucket_cap_mb`: None
317
+ - `ddp_broadcast_buffers`: False
318
+ - `dataloader_pin_memory`: True
319
+ - `dataloader_persistent_workers`: False
320
+ - `skip_memory_metrics`: True
321
+ - `use_legacy_prediction_loop`: False
322
+ - `push_to_hub`: False
323
+ - `resume_from_checkpoint`: None
324
+ - `hub_model_id`: None
325
+ - `hub_strategy`: every_save
326
+ - `hub_private_repo`: None
327
+ - `hub_always_push`: False
328
+ - `gradient_checkpointing`: False
329
+ - `gradient_checkpointing_kwargs`: None
330
+ - `include_inputs_for_metrics`: False
331
+ - `include_for_metrics`: []
332
+ - `eval_do_concat_batches`: True
333
+ - `fp16_backend`: auto
334
+ - `push_to_hub_model_id`: None
335
+ - `push_to_hub_organization`: None
336
+ - `mp_parameters`:
337
+ - `auto_find_batch_size`: False
338
+ - `full_determinism`: False
339
+ - `torchdynamo`: None
340
+ - `ray_scope`: last
341
+ - `ddp_timeout`: 1800
342
+ - `torch_compile`: False
343
+ - `torch_compile_backend`: None
344
+ - `torch_compile_mode`: None
345
+ - `dispatch_batches`: None
346
+ - `split_batches`: None
347
+ - `include_tokens_per_second`: False
348
+ - `include_num_input_tokens_seen`: False
349
+ - `neftune_noise_alpha`: None
350
+ - `optim_target_modules`: None
351
+ - `batch_eval_metrics`: False
352
+ - `eval_on_start`: False
353
+ - `use_liger_kernel`: False
354
+ - `eval_use_gather_object`: False
355
+ - `average_tokens_across_devices`: False
356
+ - `prompts`: None
357
+ - `batch_sampler`: no_duplicates
358
+ - `multi_dataset_batch_sampler`: proportional
359
+
360
+ </details>
361
+
362
+ ### Training Logs
363
+ | Epoch | Step | Training Loss | Validation Loss | all-nli-dev_cosine_accuracy |
364
+ |:------:|:----:|:-------------:|:---------------:|:---------------------------:|
365
+ | 0 | 0 | - | - | 0.6560 |
366
+ | 0.0640 | 100 | 2.5326 | 1.1147 | 0.8273 |
367
+ | 0.1280 | 200 | 1.3615 | 1.1867 | 0.8255 |
368
+ | 0.1919 | 300 | 1.4096 | 1.3049 | 0.8528 |
369
+ | 0.2559 | 400 | 1.3446 | 1.2134 | 0.8657 |
370
+ | 0.3199 | 500 | 1.3463 | 1.1592 | 0.8534 |
371
+ | 0.3839 | 600 | 1.4894 | 1.0539 | 0.8569 |
372
+ | 0.4479 | 700 | 1.3195 | 0.9769 | 0.8706 |
373
+ | 0.5118 | 800 | 1.2295 | 1.0469 | 0.8786 |
374
+ | 0.5758 | 900 | 1.3788 | 0.9400 | 0.8888 |
375
+ | 0.6398 | 1000 | 1.1877 | 0.8918 | 0.8958 |
376
+ | 0.7038 | 1100 | 1.194 | 0.8573 | 0.8934 |
377
+ | 0.7678 | 1200 | 1.253 | 0.8670 | 0.9028 |
378
+ | 0.8317 | 1300 | 1.1131 | 0.8377 | 0.9086 |
379
+ | 0.8957 | 1400 | 1.2088 | 0.8337 | 0.9039 |
380
+ | 0.9597 | 1500 | 0.3982 | 0.7835 | 0.8985 |
381
+
382
+
383
+ ### Framework Versions
384
+ - Python: 3.12.7
385
+ - Sentence Transformers: 3.3.1
386
+ - Transformers: 4.48.0.dev0
387
+ - PyTorch: 2.5.1+cu118
388
+ - Accelerate: 1.2.1
389
+ - Datasets: 3.2.0
390
+ - Tokenizers: 0.21.0
391
+
392
+ ## Citation
393
+
394
+ ### BibTeX
395
+
396
+ #### Sentence Transformers
397
+ ```bibtex
398
+ @inproceedings{reimers-2019-sentence-bert,
399
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
400
+ author = "Reimers, Nils and Gurevych, Iryna",
401
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
402
+ month = "11",
403
+ year = "2019",
404
+ publisher = "Association for Computational Linguistics",
405
+ url = "https://arxiv.org/abs/1908.10084",
406
+ }
407
+ ```
408
+
409
+ #### MultipleNegativesRankingLoss
410
+ ```bibtex
411
+ @misc{henderson2017efficient,
412
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
413
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
414
+ year={2017},
415
+ eprint={1705.00652},
416
+ archivePrefix={arXiv},
417
+ primaryClass={cs.CL}
418
+ }
419
+ ```
420
+
421
+ <!--
422
+ ## Glossary
423
+
424
+ *Clearly define terms in order to be accessible across audiences.*
425
+ -->
426
+
427
+ <!--
428
+ ## Model Card Authors
429
+
430
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
431
+ -->
432
+
433
+ <!--
434
+ ## Model Card Contact
435
+
436
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
437
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "outputs/models/FacebookAI/roberta-base/final",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.48.0.dev0",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0.dev0",
5
+ "pytorch": "2.5.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8409be27039a4f1c0e07fae3885d5663abf6762237fbdc606e9d4dfcf6ecd9c3
3
+ size 498604904
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "max_length": 512,
53
+ "model_max_length": 512,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "tokenizer_class": "RobertaTokenizer",
61
+ "trim_offsets": true,
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff