maidalun1020
commited on
Commit
·
3b18090
1
Parent(s):
0ca1bc5
Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ license: apache-2.0
|
|
12 |
<h1 align="center">BCEmbedding: Bilingual and Crosslingual Embedding for RAG</h1>
|
13 |
|
14 |
<p align="center">
|
15 |
-
<a href="https://github.com/netease-youdao/BCEmbedding/LICENSE">
|
16 |
<img src="https://img.shields.io/badge/license-Apache--2.0-yellow">
|
17 |
</a>
|
18 |
<a href="https://twitter.com/YDopensource">
|
@@ -109,11 +109,11 @@ Existing embedding models often encounter performance challenges in bilingual an
|
|
109 |
|
110 |
- ***2024-01-03***: **Model Releases** - [bce-embedding-base_v1](https://huggingface.co/maidalun1020/bce-embedding-base_v1) and [bce-reranker-base_v1](https://huggingface.co/maidalun1020/bce-reranker-base_v1) are available.
|
111 |
- ***2024-01-03***: **Eval Datasets** [[CrosslingualMultiDomainsDataset](https://huggingface.co/datasets/maidalun1020/CrosslingualMultiDomainsDataset)] - Evaluate the performence of RAG, using [LlamaIndex](https://github.com/run-llama/llama_index).
|
112 |
-
- ***2024-01-03***: **Eval Datasets** [[Details](https://github.com/netease-youdao/BCEmbedding/BCEmbedding/evaluation/c_mteb/Retrieval.py)] - Evaluate the performence of crosslingual semantic representation, using [MTEB](https://github.com/embeddings-benchmark/mteb).
|
113 |
|
114 |
- ***2024-01-03***: **模型发布** - [bce-embedding-base_v1](https://huggingface.co/maidalun1020/bce-embedding-base_v1)和[bce-reranker-base_v1](https://huggingface.co/maidalun1020/bce-reranker-base_v1)已发布.
|
115 |
- ***2024-01-03***: **RAG评测数据** [[CrosslingualMultiDomainsDataset](https://huggingface.co/datasets/maidalun1020/CrosslingualMultiDomainsDataset)] - 基于[LlamaIndex](https://github.com/run-llama/llama_index)的RAG评测数据已发布。
|
116 |
-
- ***2024-01-03***: **跨语种语义表征评测数据** [[详情](https://github.com/netease-youdao/BCEmbedding/BCEmbedding/evaluation/c_mteb/Retrieval.py)] - 基于[MTEB](https://github.com/embeddings-benchmark/mteb)的跨语种评测数据已发布.
|
117 |
|
118 |
## 🍎 Model List
|
119 |
|
@@ -146,7 +146,7 @@ pip install -v -e .
|
|
146 |
|
147 |
### Quick Start
|
148 |
|
149 |
-
Use `EmbeddingModel` by `BCEmbedding`, and `cls` [pooler](https://github.com/netease-youdao/BCEmbedding/BCEmbedding/models/embedding.py#L24) is default.
|
150 |
|
151 |
```python
|
152 |
from BCEmbedding import EmbeddingModel
|
@@ -234,9 +234,9 @@ The evaluation tasks contain ***12 datastes*** of **"Reranking"**.
|
|
234 |
|
235 |
#### 3. Metrics Visualization Tool
|
236 |
|
237 |
-
We proveide a one-click script to sumarize evaluation results of `embedding` and `reranker` models as [Embedding Models Evaluation Summary](https://github.com/netease-youdao/BCEmbedding/Docs/EvaluationSummary/embedding_eval_summary.md) and [Reranker Models Evaluation Summary](https://github.com/netease-youdao/BCEmbedding/Docs/EvaluationSummary/reranker_eval_summary.md).
|
238 |
|
239 |
-
我们提供了`embedding`和`reranker`模型的指标可视化一键脚本,输出一个markdown文件,详见[Embedding模型指标汇总](https://github.com/netease-youdao/BCEmbedding/Docs/EvaluationSummary/embedding_eval_summary.md)和[Reranker模型指标汇总](https://github.com/netease-youdao/BCEmbedding/Docs/EvaluationSummary/reranker_eval_summary.md)。
|
240 |
|
241 |
```bash
|
242 |
python BCEmbedding/evaluation/mteb/summarize_eval_results.py --results_dir {your_embedding_results_dir | your_reranker_results_dir}
|
@@ -287,12 +287,12 @@ Then, sumarize the evaluation results by:
|
|
287 |
python BCEmbedding/tools/eval_rag/summarize_eval_results.py --results_dir results/rag_reproduce_results
|
288 |
```
|
289 |
|
290 |
-
Results Reproduced from the LlamaIndex Blog can be checked in ***[Reproduced Summary of RAG Evaluation](https://github.com/netease-youdao/BCEmbedding/Docs/EvaluationSummary/rag_eval_reproduced_summary.md)***, with some obvious ***conclusions***:
|
291 |
- In `WithoutReranker` setting, our `bce-embedding-base_v1` outperforms all the other embedding models.
|
292 |
- With fixing the embedding model, our `bce-reranker-base_v1` achieves the best performence.
|
293 |
- ***The combination of `bce-embedding-base_v1` and `bce-reranker-base_v1` is SOTA.***
|
294 |
|
295 |
-
输出的指标汇总详见 ***[LlamaIndex RAG评测结果复现](https://github.com/netease-youdao/BCEmbedding/Docs/EvaluationSummary/rag_eval_reproduced_summary.md)***。从该复现结果中,可以看出:
|
296 |
- 在`WithoutReranker`设置下(**竖排对比**),`bce-embedding-base_v1`比其他embedding模型效果都要好。
|
297 |
- 在固定embedding模型设置下,对比不同reranker效果(**横排对比**),`bce-reranker-base_v1`比其他reranker模型效果都要好。
|
298 |
- ***`bce-embedding-base_v1`和`bce-reranker-base_v1`组合,表现SOTA。***
|
@@ -337,14 +337,14 @@ The summary of multiple domains evaluations can be seen in <a href=#1-multiple-d
|
|
337 |
***NOTE:***
|
338 |
- Our ***bce-embedding-base_v1*** outperforms other opensource embedding models with various model size.
|
339 |
- ***114 datastes*** of **"Retrieval", "STS", "PairClassification", "Classification", "Reranking" and "Clustering"** in `["en", "zh", "en-zh", "zh-en"]` setting.
|
340 |
-
- The [crosslingual evaluation datasets](https://github.com/netease-youdao/BCEmbedding/BCEmbedding/evaluation/c_mteb/Retrieval.py) we released belong to `Retrieval` task.
|
341 |
-
- More evaluation details please check [Embedding Models Evaluation Summary](https://github.com/netease-youdao/BCEmbedding/Docs/EvaluationSummary/embedding_eval_summary.md).
|
342 |
|
343 |
***要点:***
|
344 |
- 对比所有开源的各种规模的embedding模型,***bce-embedding-base_v1*** 表现最好。
|
345 |
- 评测包含 **"Retrieval", "STS", "PairClassification", "Classification", "Reranking"和"Clustering"** 这六大类任务的共 ***114个数据集***。
|
346 |
-
- 我们开源的[跨语种语义表征评测数据](https://github.com/netease-youdao/BCEmbedding/BCEmbedding/evaluation/c_mteb/Retrieval.py)属于`Retrieval`任务。
|
347 |
-
- 更详细的评测结果详见[Embedding模型指标汇总](https://github.com/netease-youdao/BCEmbedding/Docs/EvaluationSummary/embedding_eval_summary.md)。
|
348 |
|
349 |
#### 2. Reranker Models
|
350 |
|
@@ -357,12 +357,12 @@ The summary of multiple domains evaluations can be seen in <a href=#1-multiple-d
|
|
357 |
***NOTE:***
|
358 |
- Our ***bce-reranker-base_v1*** outperforms other opensource reranker models.
|
359 |
- ***12 datastes*** of **"Reranking"** in `["en", "zh", "en-zh", "zh-en"]` setting.
|
360 |
-
- More evaluation details please check [Reranker Models Evaluation Summary](https://github.com/netease-youdao/BCEmbedding/Docs/EvaluationSummary/reranker_eval_summary.md).
|
361 |
|
362 |
***要点:***
|
363 |
- ***bce-reranker-base_v1*** 优于其他开源reranker模型。
|
364 |
- 评测包含 **"Reranking"** 任务的 ***12个数据集***。
|
365 |
-
- 更详细的评测结果详见[Reranker模型指标汇总](https://github.com/netease-youdao/BCEmbedding/Docs/EvaluationSummary/reranker_eval_summary.md)
|
366 |
|
367 |
### RAG Evaluations in LlamaIndex
|
368 |
|
@@ -401,7 +401,7 @@ Welcome to scan the QR code below and join the WeChat group.
|
|
401 |
|
402 |
欢迎大家扫码加入官方微信交流群。
|
403 |
|
404 |
-
<img src="https://github.com/netease-youdao/BCEmbedding/Docs/assets/Wechat.jpg" width="20%" height="auto">
|
405 |
|
406 |
## ✏️ Citation
|
407 |
|
@@ -420,7 +420,7 @@ If you use `BCEmbedding` in your research or project, please feel free to cite a
|
|
420 |
|
421 |
## 🔐 License
|
422 |
|
423 |
-
`BCEmbedding` is licensed under [Apache 2.0 License](https://github.com/netease-youdao/BCEmbedding/LICENSE)
|
424 |
|
425 |
## 🔗 Related Links
|
426 |
|
|
|
12 |
<h1 align="center">BCEmbedding: Bilingual and Crosslingual Embedding for RAG</h1>
|
13 |
|
14 |
<p align="center">
|
15 |
+
<a href="https://github.com/netease-youdao/BCEmbedding/blob/master/LICENSE">
|
16 |
<img src="https://img.shields.io/badge/license-Apache--2.0-yellow">
|
17 |
</a>
|
18 |
<a href="https://twitter.com/YDopensource">
|
|
|
109 |
|
110 |
- ***2024-01-03***: **Model Releases** - [bce-embedding-base_v1](https://huggingface.co/maidalun1020/bce-embedding-base_v1) and [bce-reranker-base_v1](https://huggingface.co/maidalun1020/bce-reranker-base_v1) are available.
|
111 |
- ***2024-01-03***: **Eval Datasets** [[CrosslingualMultiDomainsDataset](https://huggingface.co/datasets/maidalun1020/CrosslingualMultiDomainsDataset)] - Evaluate the performence of RAG, using [LlamaIndex](https://github.com/run-llama/llama_index).
|
112 |
+
- ***2024-01-03***: **Eval Datasets** [[Details](https://github.com/netease-youdao/BCEmbedding/blob/master/BCEmbedding/evaluation/c_mteb/Retrieval.py)] - Evaluate the performence of crosslingual semantic representation, using [MTEB](https://github.com/embeddings-benchmark/mteb).
|
113 |
|
114 |
- ***2024-01-03***: **模型发布** - [bce-embedding-base_v1](https://huggingface.co/maidalun1020/bce-embedding-base_v1)和[bce-reranker-base_v1](https://huggingface.co/maidalun1020/bce-reranker-base_v1)已发布.
|
115 |
- ***2024-01-03***: **RAG评测数据** [[CrosslingualMultiDomainsDataset](https://huggingface.co/datasets/maidalun1020/CrosslingualMultiDomainsDataset)] - 基于[LlamaIndex](https://github.com/run-llama/llama_index)的RAG评测数据已发布。
|
116 |
+
- ***2024-01-03***: **跨语种语义表征评测数据** [[详情](https://github.com/netease-youdao/BCEmbedding/blob/master/BCEmbedding/evaluation/c_mteb/Retrieval.py)] - 基于[MTEB](https://github.com/embeddings-benchmark/mteb)的跨语种评测数据已发布.
|
117 |
|
118 |
## 🍎 Model List
|
119 |
|
|
|
146 |
|
147 |
### Quick Start
|
148 |
|
149 |
+
Use `EmbeddingModel` by `BCEmbedding`, and `cls` [pooler](https://github.com/netease-youdao/BCEmbedding/blob/master/BCEmbedding/models/embedding.py#L24) is default.
|
150 |
|
151 |
```python
|
152 |
from BCEmbedding import EmbeddingModel
|
|
|
234 |
|
235 |
#### 3. Metrics Visualization Tool
|
236 |
|
237 |
+
We proveide a one-click script to sumarize evaluation results of `embedding` and `reranker` models as [Embedding Models Evaluation Summary](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/embedding_eval_summary.md) and [Reranker Models Evaluation Summary](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/reranker_eval_summary.md).
|
238 |
|
239 |
+
我们提供了`embedding`和`reranker`模型的指标可视化一键脚本,输出一个markdown文件,详见[Embedding模型指标汇总](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/embedding_eval_summary.md)和[Reranker模型指标汇总](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/reranker_eval_summary.md)。
|
240 |
|
241 |
```bash
|
242 |
python BCEmbedding/evaluation/mteb/summarize_eval_results.py --results_dir {your_embedding_results_dir | your_reranker_results_dir}
|
|
|
287 |
python BCEmbedding/tools/eval_rag/summarize_eval_results.py --results_dir results/rag_reproduce_results
|
288 |
```
|
289 |
|
290 |
+
Results Reproduced from the LlamaIndex Blog can be checked in ***[Reproduced Summary of RAG Evaluation](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/rag_eval_reproduced_summary.md)***, with some obvious ***conclusions***:
|
291 |
- In `WithoutReranker` setting, our `bce-embedding-base_v1` outperforms all the other embedding models.
|
292 |
- With fixing the embedding model, our `bce-reranker-base_v1` achieves the best performence.
|
293 |
- ***The combination of `bce-embedding-base_v1` and `bce-reranker-base_v1` is SOTA.***
|
294 |
|
295 |
+
输出的指标汇总详见 ***[LlamaIndex RAG评测结果复现](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/rag_eval_reproduced_summary.md)***。从该复现结果中,可以看出:
|
296 |
- 在`WithoutReranker`设置下(**竖排对比**),`bce-embedding-base_v1`比其他embedding模型效果都要好。
|
297 |
- 在固定embedding模型设置下,对比不同reranker效果(**横排对比**),`bce-reranker-base_v1`比其他reranker模型效果都要好。
|
298 |
- ***`bce-embedding-base_v1`和`bce-reranker-base_v1`组合,表现SOTA。***
|
|
|
337 |
***NOTE:***
|
338 |
- Our ***bce-embedding-base_v1*** outperforms other opensource embedding models with various model size.
|
339 |
- ***114 datastes*** of **"Retrieval", "STS", "PairClassification", "Classification", "Reranking" and "Clustering"** in `["en", "zh", "en-zh", "zh-en"]` setting.
|
340 |
+
- The [crosslingual evaluation datasets](https://github.com/netease-youdao/BCEmbedding/blob/master/BCEmbedding/evaluation/c_mteb/Retrieval.py) we released belong to `Retrieval` task.
|
341 |
+
- More evaluation details please check [Embedding Models Evaluation Summary](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/embedding_eval_summary.md).
|
342 |
|
343 |
***要点:***
|
344 |
- 对比所有开源的各种规模的embedding模型,***bce-embedding-base_v1*** 表现最好。
|
345 |
- 评测包含 **"Retrieval", "STS", "PairClassification", "Classification", "Reranking"和"Clustering"** 这六大类任务的共 ***114个数据集***。
|
346 |
+
- 我们开源的[跨语种语义表征评测数据](https://github.com/netease-youdao/BCEmbedding/blob/master/BCEmbedding/evaluation/c_mteb/Retrieval.py)属于`Retrieval`任务。
|
347 |
+
- 更详细的评测结果详见[Embedding模型指标汇总](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/embedding_eval_summary.md)。
|
348 |
|
349 |
#### 2. Reranker Models
|
350 |
|
|
|
357 |
***NOTE:***
|
358 |
- Our ***bce-reranker-base_v1*** outperforms other opensource reranker models.
|
359 |
- ***12 datastes*** of **"Reranking"** in `["en", "zh", "en-zh", "zh-en"]` setting.
|
360 |
+
- More evaluation details please check [Reranker Models Evaluation Summary](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/reranker_eval_summary.md).
|
361 |
|
362 |
***要点:***
|
363 |
- ***bce-reranker-base_v1*** 优于其他开源reranker模型。
|
364 |
- 评测包含 **"Reranking"** 任务的 ***12个数据集***。
|
365 |
+
- 更详细的评测结果详见[Reranker模型指标汇总](https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/reranker_eval_summary.md)
|
366 |
|
367 |
### RAG Evaluations in LlamaIndex
|
368 |
|
|
|
401 |
|
402 |
欢迎大家扫码加入官方微信交流群。
|
403 |
|
404 |
+
<img src="https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/assets/Wechat.jpg" width="20%" height="auto">
|
405 |
|
406 |
## ✏️ Citation
|
407 |
|
|
|
420 |
|
421 |
## 🔐 License
|
422 |
|
423 |
+
`BCEmbedding` is licensed under [Apache 2.0 License](https://github.com/netease-youdao/BCEmbedding/blob/master/LICENSE)
|
424 |
|
425 |
## 🔗 Related Links
|
426 |
|