--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - yashtiwari/PaulMooney-Medical-ASR-Data metrics: - wer model-index: - name: Whisper Medium Medical results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical ASR type: yashtiwari/PaulMooney-Medical-ASR-Data metrics: - name: Wer type: wer value: 16.051170649287954 --- [Visualize in Weights & Biases](https://wandb.ai/jutsu-labs/huggingface/runs/nnp3wvhl) # Whisper Medium Medical This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Medical ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.0567 - Wer: 16.0512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4817 | 0.5405 | 100 | 0.1982 | 12.8651 | | 0.104 | 1.0811 | 200 | 0.0839 | 10.3065 | | 0.0549 | 1.6216 | 300 | 0.0643 | 15.9063 | | 0.0245 | 2.1622 | 400 | 0.0610 | 14.0961 | | 0.012 | 2.7027 | 500 | 0.0567 | 16.0512 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.2.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1