File size: 2,213 Bytes
7fe4297 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- yashtiwari/PaulMooney-Medical-ASR-Data
metrics:
- wer
model-index:
- name: Whisper Medium Medical
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Medical ASR
type: yashtiwari/PaulMooney-Medical-ASR-Data
metrics:
- name: Wer
type: wer
value: 16.051170649287954
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/jutsu-labs/huggingface/runs/nnp3wvhl)
# Whisper Medium Medical
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Medical ASR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0567
- Wer: 16.0512
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.4817 | 0.5405 | 100 | 0.1982 | 12.8651 |
| 0.104 | 1.0811 | 200 | 0.0839 | 10.3065 |
| 0.0549 | 1.6216 | 300 | 0.0643 | 15.9063 |
| 0.0245 | 2.1622 | 400 | 0.0610 | 14.0961 |
| 0.012 | 2.7027 | 500 | 0.0567 | 16.0512 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.2.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|