--- tags: - spacy - token-classification - text-classification language: - en model-index: - name: en_generic_big results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9469753547 - name: NER Recall type: recall value: 0.9399555226 - name: NER F Score type: f_score value: 0.943452381 --- | Feature | Description | | --- | --- | | **Name** | `en_generic_big` | | **Version** | `0.0.1` | | **spaCy** | `>=3.7.5,<3.8.0` | | **Default Pipeline** | `tok2vec`, `ner`, `textcat` | | **Components** | `tok2vec`, `ner`, `textcat` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (35 labels for 2 components) | Component | Labels | | --- | --- | | **`ner`** | `AGE`, `BRAND`, `CLOCK_SPEED`, `COLOR`, `CORE_COUNT`, `DECORATION`, `FEATURE`, `FIT`, `GENDER`, `GRAPHICS`, `GRAPHICS_RAM`, `MATERIAL`, `MEASUREMENT`, `MEASUREMENT_AREA`, `MEM_TYPE`, `MODEL_NUMBER`, `NECKLINE`, `OPERATING_SYSTEM`, `PROCESSOR`, `PROCESSOR_MODEL`, `PRODUCT_SERIES`, `RAM`, `RESOLUTION`, `SCREEN_SIZE`, `SCREEN_TYPE`, `SIZE`, `SLEEVE`, `STORAGE`, `STORAGE_TYPE`, `TAG`, `TYPE`, `ZIP` | | **`textcat`** | `212`, `297`, `328` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 94.35 | | `ENTS_P` | 94.70 | | `ENTS_R` | 94.00 | | `CATS_SCORE` | 100.00 | | `CATS_MICRO_P` | 100.00 | | `CATS_MICRO_R` | 100.00 | | `CATS_MICRO_F` | 100.00 | | `CATS_MACRO_P` | 100.00 | | `CATS_MACRO_R` | 100.00 | | `CATS_MACRO_F` | 100.00 | | `CATS_MACRO_AUC` | 100.00 | | `TOK2VEC_LOSS` | 28927.81 | | `NER_LOSS` | 63903.29 | | `TEXTCAT_LOSS` | 0.08 |