machinelearningzuu commited on
Commit
6069f01
·
verified ·
1 Parent(s): 2c5693b

queue_detection_cctv

Browse files
Files changed (2) hide show
  1. README.md +173 -199
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,199 +1,173 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/conditional-detr-resnet-50
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: queue_detection_cctv
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # queue_detection_cctv
15
+
16
+ This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.1291
19
+ - Map: 0.9532
20
+ - Map 50: 0.9901
21
+ - Map 75: 0.9845
22
+ - Map Small: -1.0
23
+ - Map Medium: 0.3203
24
+ - Map Large: 0.9578
25
+ - Mar 1: 0.5044
26
+ - Mar 10: 0.9715
27
+ - Mar 100: 0.972
28
+ - Mar Small: -1.0
29
+ - Mar Medium: 0.3538
30
+ - Mar Large: 0.9747
31
+ - Map Cashier: 0.9618
32
+ - Mar 100 Cashier: 0.9775
33
+ - Map Cx: 0.9447
34
+ - Mar 100 Cx: 0.9664
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 5e-05
54
+ - train_batch_size: 2
55
+ - eval_batch_size: 8
56
+ - seed: 42
57
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
58
+ - lr_scheduler_type: cosine
59
+ - num_epochs: 100
60
+ - mixed_precision_training: Native AMP
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Cashier | Mar 100 Cashier | Map Cx | Mar 100 Cx |
65
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:-----------:|:---------------:|:------:|:----------:|
66
+ | No log | 1.0 | 218 | 1.3927 | 0.1975 | 0.3459 | 0.1995 | -1.0 | 0.0 | 0.1988 | 0.2409 | 0.5283 | 0.7011 | -1.0 | 0.0 | 0.7055 | 0.2115 | 0.8043 | 0.1834 | 0.5979 |
67
+ | No log | 2.0 | 436 | 0.9964 | 0.5247 | 0.8011 | 0.591 | -1.0 | 0.0079 | 0.5292 | 0.3316 | 0.6966 | 0.7387 | -1.0 | 0.0071 | 0.7453 | 0.5772 | 0.8086 | 0.4723 | 0.6688 |
68
+ | 2.7418 | 3.0 | 654 | 0.8535 | 0.6031 | 0.9058 | 0.6954 | -1.0 | 0.0349 | 0.6069 | 0.3603 | 0.7079 | 0.733 | -1.0 | 0.2 | 0.7362 | 0.6576 | 0.769 | 0.5485 | 0.6969 |
69
+ | 2.7418 | 4.0 | 872 | 0.7406 | 0.6499 | 0.9356 | 0.752 | -1.0 | 0.0479 | 0.6543 | 0.3756 | 0.7387 | 0.7586 | -1.0 | 0.0923 | 0.7634 | 0.7052 | 0.7953 | 0.5947 | 0.7219 |
70
+ | 0.8155 | 5.0 | 1090 | 0.6721 | 0.6731 | 0.9516 | 0.8113 | -1.0 | 0.0249 | 0.6773 | 0.3819 | 0.7501 | 0.7654 | -1.0 | 0.0455 | 0.7701 | 0.7451 | 0.8203 | 0.601 | 0.7105 |
71
+ | 0.8155 | 6.0 | 1308 | 0.5804 | 0.7244 | 0.9632 | 0.8738 | 0.0 | 0.0712 | 0.7288 | 0.4038 | 0.7882 | 0.8023 | 0.0 | 0.1731 | 0.8066 | 0.7818 | 0.8419 | 0.6671 | 0.7627 |
72
+ | 0.6668 | 7.0 | 1526 | 0.5430 | 0.7484 | 0.9667 | 0.9041 | -1.0 | 0.076 | 0.7527 | 0.417 | 0.8027 | 0.813 | -1.0 | 0.2205 | 0.8171 | 0.8068 | 0.8602 | 0.69 | 0.7658 |
73
+ | 0.6668 | 8.0 | 1744 | 0.5524 | 0.7361 | 0.9691 | 0.8958 | -1.0 | 0.0273 | 0.7416 | 0.4045 | 0.7839 | 0.7933 | -1.0 | 0.1286 | 0.7981 | 0.7845 | 0.8274 | 0.6877 | 0.7592 |
74
+ | 0.6668 | 9.0 | 1962 | 0.5359 | 0.7415 | 0.9737 | 0.901 | -1.0 | 0.0845 | 0.7462 | 0.4112 | 0.7999 | 0.8044 | -1.0 | 0.1462 | 0.8088 | 0.7844 | 0.8376 | 0.6986 | 0.7713 |
75
+ | 0.5735 | 10.0 | 2180 | 0.5154 | 0.7497 | 0.9744 | 0.907 | 0.0 | 0.0368 | 0.7538 | 0.414 | 0.8042 | 0.8093 | 0.0 | 0.1333 | 0.813 | 0.8085 | 0.86 | 0.6909 | 0.7586 |
76
+ | 0.5735 | 11.0 | 2398 | 0.4543 | 0.7824 | 0.9754 | 0.9337 | 0.0 | 0.0709 | 0.7908 | 0.4307 | 0.8323 | 0.8368 | 0.0 | 0.1794 | 0.8449 | 0.8312 | 0.8765 | 0.7336 | 0.7972 |
77
+ | 0.5189 | 12.0 | 2616 | 0.4802 | 0.7679 | 0.9769 | 0.9274 | 0.0 | 0.1201 | 0.7724 | 0.426 | 0.8197 | 0.825 | 0.0 | 0.1917 | 0.8291 | 0.7985 | 0.85 | 0.7374 | 0.8 |
78
+ | 0.5189 | 13.0 | 2834 | 0.4306 | 0.7906 | 0.9825 | 0.9332 | -1.0 | 0.0708 | 0.7941 | 0.435 | 0.8394 | 0.8448 | -1.0 | 0.23 | 0.8474 | 0.8474 | 0.889 | 0.7339 | 0.8006 |
79
+ | 0.4874 | 14.0 | 3052 | 0.4660 | 0.7649 | 0.9818 | 0.9264 | -1.0 | 0.0504 | 0.7713 | 0.4219 | 0.8155 | 0.8222 | -1.0 | 0.0875 | 0.8288 | 0.805 | 0.8527 | 0.7248 | 0.7917 |
80
+ | 0.4874 | 15.0 | 3270 | 0.4392 | 0.7867 | 0.9773 | 0.9278 | 0.0 | 0.0256 | 0.7961 | 0.4372 | 0.8336 | 0.8385 | 0.0 | 0.1028 | 0.8466 | 0.8243 | 0.8725 | 0.7492 | 0.8045 |
81
+ | 0.4874 | 16.0 | 3488 | 0.4178 | 0.8018 | 0.9847 | 0.9355 | -1.0 | 0.2037 | 0.8061 | 0.4387 | 0.8493 | 0.8551 | -1.0 | 0.3714 | 0.8589 | 0.8394 | 0.8881 | 0.7641 | 0.822 |
82
+ | 0.4646 | 17.0 | 3706 | 0.3859 | 0.8138 | 0.9838 | 0.9502 | -1.0 | 0.1217 | 0.8189 | 0.4459 | 0.8584 | 0.863 | -1.0 | 0.2038 | 0.8669 | 0.8508 | 0.8956 | 0.7769 | 0.8303 |
83
+ | 0.4646 | 18.0 | 3924 | 0.4041 | 0.7987 | 0.9822 | 0.9457 | -1.0 | 0.097 | 0.8032 | 0.4378 | 0.8486 | 0.8518 | -1.0 | 0.1611 | 0.8551 | 0.8323 | 0.881 | 0.7652 | 0.8226 |
84
+ | 0.4317 | 19.0 | 4142 | 0.4013 | 0.8086 | 0.9838 | 0.9442 | -1.0 | 0.1816 | 0.814 | 0.4412 | 0.8513 | 0.8557 | -1.0 | 0.2571 | 0.8605 | 0.8522 | 0.8919 | 0.765 | 0.8195 |
85
+ | 0.4317 | 20.0 | 4360 | 0.3869 | 0.8123 | 0.9823 | 0.9388 | -1.0 | 0.1597 | 0.8163 | 0.4475 | 0.8579 | 0.8617 | -1.0 | 0.2042 | 0.8653 | 0.8542 | 0.896 | 0.7705 | 0.8274 |
86
+ | 0.4215 | 21.0 | 4578 | 0.3721 | 0.816 | 0.9864 | 0.9536 | -1.0 | 0.1206 | 0.8198 | 0.4478 | 0.8598 | 0.863 | -1.0 | 0.2727 | 0.8655 | 0.8607 | 0.9003 | 0.7713 | 0.8258 |
87
+ | 0.4215 | 22.0 | 4796 | 0.3777 | 0.8245 | 0.9806 | 0.9507 | 0.0 | 0.1034 | 0.8324 | 0.4537 | 0.8621 | 0.8649 | 0.0 | 0.2118 | 0.8724 | 0.8651 | 0.9012 | 0.7839 | 0.8287 |
88
+ | 0.3925 | 23.0 | 5014 | 0.3387 | 0.8411 | 0.9872 | 0.9577 | -1.0 | 0.1184 | 0.845 | 0.4593 | 0.8775 | 0.8799 | -1.0 | 0.2429 | 0.8835 | 0.8813 | 0.9153 | 0.8008 | 0.8444 |
89
+ | 0.3925 | 24.0 | 5232 | 0.3234 | 0.842 | 0.9887 | 0.9671 | -1.0 | 0.1229 | 0.8463 | 0.4604 | 0.8794 | 0.8812 | -1.0 | 0.1864 | 0.885 | 0.8736 | 0.909 | 0.8104 | 0.8534 |
90
+ | 0.3925 | 25.0 | 5450 | 0.3463 | 0.8356 | 0.9869 | 0.9556 | -1.0 | 0.0775 | 0.8411 | 0.4552 | 0.8769 | 0.8793 | -1.0 | 0.1929 | 0.8838 | 0.8788 | 0.913 | 0.7925 | 0.8456 |
91
+ | 0.3676 | 26.0 | 5668 | 0.3170 | 0.846 | 0.988 | 0.9666 | 0.0 | 0.1172 | 0.8515 | 0.4603 | 0.886 | 0.8872 | 0.0 | 0.285 | 0.8907 | 0.8831 | 0.9182 | 0.8089 | 0.8562 |
92
+ | 0.3676 | 27.0 | 5886 | 0.3552 | 0.8246 | 0.9832 | 0.9545 | -1.0 | 0.13 | 0.8285 | 0.4535 | 0.8704 | 0.8745 | -1.0 | 0.2367 | 0.8785 | 0.8559 | 0.9005 | 0.7932 | 0.8484 |
93
+ | 0.3669 | 28.0 | 6104 | 0.3342 | 0.8427 | 0.9876 | 0.9665 | -1.0 | 0.1369 | 0.8468 | 0.4585 | 0.8813 | 0.8843 | -1.0 | 0.2625 | 0.8874 | 0.8587 | 0.898 | 0.8267 | 0.8707 |
94
+ | 0.3669 | 29.0 | 6322 | 0.3033 | 0.854 | 0.9892 | 0.9687 | -1.0 | 0.1795 | 0.8572 | 0.4663 | 0.8954 | 0.8968 | -1.0 | 0.3 | 0.8991 | 0.8813 | 0.9193 | 0.8268 | 0.8744 |
95
+ | 0.349 | 30.0 | 6540 | 0.3099 | 0.8515 | 0.9863 | 0.9676 | -1.0 | 0.1251 | 0.8571 | 0.4666 | 0.8917 | 0.8936 | -1.0 | 0.2 | 0.8978 | 0.8868 | 0.9261 | 0.8162 | 0.8611 |
96
+ | 0.349 | 31.0 | 6758 | 0.3247 | 0.842 | 0.9884 | 0.963 | 0.0 | 0.1145 | 0.8491 | 0.4607 | 0.8828 | 0.8854 | 0.0 | 0.1462 | 0.8916 | 0.8704 | 0.9104 | 0.8137 | 0.8605 |
97
+ | 0.349 | 32.0 | 6976 | 0.2943 | 0.8529 | 0.9887 | 0.9651 | -1.0 | 0.1639 | 0.8587 | 0.4683 | 0.8916 | 0.8949 | -1.0 | 0.225 | 0.8997 | 0.89 | 0.9246 | 0.8158 | 0.8653 |
98
+ | 0.3378 | 33.0 | 7194 | 0.2923 | 0.8605 | 0.989 | 0.9695 | -1.0 | 0.1212 | 0.8657 | 0.4687 | 0.8985 | 0.9006 | -1.0 | 0.2136 | 0.9042 | 0.8893 | 0.9257 | 0.8317 | 0.8756 |
99
+ | 0.3378 | 34.0 | 7412 | 0.2878 | 0.8616 | 0.9895 | 0.9673 | -1.0 | 0.1464 | 0.8665 | 0.4712 | 0.897 | 0.899 | -1.0 | 0.2 | 0.9036 | 0.8907 | 0.9246 | 0.8325 | 0.8734 |
100
+ | 0.3206 | 35.0 | 7630 | 0.3342 | 0.837 | 0.9866 | 0.9674 | -1.0 | 0.1634 | 0.8423 | 0.4584 | 0.8772 | 0.8802 | -1.0 | 0.2611 | 0.8844 | 0.8684 | 0.906 | 0.8057 | 0.8544 |
101
+ | 0.3206 | 36.0 | 7848 | 0.2796 | 0.8713 | 0.989 | 0.9716 | -1.0 | 0.1054 | 0.8759 | 0.4699 | 0.9066 | 0.9084 | -1.0 | 0.15 | 0.9128 | 0.9052 | 0.9373 | 0.8373 | 0.8795 |
102
+ | 0.3152 | 37.0 | 8066 | 0.2894 | 0.8667 | 0.987 | 0.9746 | 0.0 | 0.1359 | 0.8743 | 0.4716 | 0.9022 | 0.9037 | 0.0 | 0.1667 | 0.9109 | 0.8966 | 0.9309 | 0.8367 | 0.8765 |
103
+ | 0.3152 | 38.0 | 8284 | 0.2641 | 0.8744 | 0.9894 | 0.9722 | -1.0 | 0.1413 | 0.8793 | 0.4727 | 0.9132 | 0.9148 | -1.0 | 0.2333 | 0.9178 | 0.8909 | 0.9305 | 0.858 | 0.8992 |
104
+ | 0.3082 | 39.0 | 8502 | 0.2834 | 0.8703 | 0.9873 | 0.9702 | -1.0 | 0.132 | 0.8764 | 0.473 | 0.9082 | 0.9128 | -1.0 | 0.2633 | 0.9168 | 0.8988 | 0.9347 | 0.8417 | 0.891 |
105
+ | 0.3082 | 40.0 | 8720 | 0.2774 | 0.8655 | 0.9897 | 0.9738 | -1.0 | 0.2021 | 0.8711 | 0.4694 | 0.9025 | 0.9043 | -1.0 | 0.275 | 0.9081 | 0.8971 | 0.9314 | 0.8339 | 0.8772 |
106
+ | 0.3082 | 41.0 | 8938 | 0.2935 | 0.8598 | 0.988 | 0.9699 | -1.0 | 0.0999 | 0.8666 | 0.4688 | 0.8961 | 0.8976 | -1.0 | 0.15 | 0.9037 | 0.8889 | 0.9255 | 0.8308 | 0.8697 |
107
+ | 0.3078 | 42.0 | 9156 | 0.2746 | 0.868 | 0.9895 | 0.9777 | -1.0 | 0.2159 | 0.8738 | 0.4712 | 0.9021 | 0.9032 | -1.0 | 0.275 | 0.9079 | 0.9016 | 0.933 | 0.8343 | 0.8734 |
108
+ | 0.3078 | 43.0 | 9374 | 0.2662 | 0.8731 | 0.9897 | 0.9798 | -1.0 | 0.1849 | 0.8794 | 0.4752 | 0.9083 | 0.9091 | -1.0 | 0.2 | 0.9136 | 0.888 | 0.9206 | 0.8582 | 0.8975 |
109
+ | 0.2898 | 44.0 | 9592 | 0.2564 | 0.8824 | 0.9868 | 0.9732 | -1.0 | 0.1263 | 0.8871 | 0.4775 | 0.9148 | 0.9165 | -1.0 | 0.15 | 0.9211 | 0.9076 | 0.9377 | 0.8571 | 0.8954 |
110
+ | 0.2898 | 45.0 | 9810 | 0.2813 | 0.8753 | 0.9876 | 0.977 | 0.0 | 0.1325 | 0.8817 | 0.4714 | 0.911 | 0.9123 | 0.0 | 0.2167 | 0.9179 | 0.9042 | 0.9381 | 0.8464 | 0.8865 |
111
+ | 0.2758 | 46.0 | 10028 | 0.2633 | 0.8786 | 0.9872 | 0.9719 | 0.0 | 0.1841 | 0.8854 | 0.4758 | 0.9164 | 0.9177 | 0.0 | 0.2615 | 0.9218 | 0.9012 | 0.9374 | 0.856 | 0.898 |
112
+ | 0.2758 | 47.0 | 10246 | 0.2479 | 0.8795 | 0.9895 | 0.9765 | 0.0 | 0.2066 | 0.8849 | 0.4765 | 0.9146 | 0.9171 | 0.0 | 0.275 | 0.9207 | 0.9114 | 0.9448 | 0.8476 | 0.8893 |
113
+ | 0.2758 | 48.0 | 10464 | 0.2373 | 0.8894 | 0.9897 | 0.9799 | -1.0 | 0.1994 | 0.8939 | 0.4795 | 0.9253 | 0.926 | -1.0 | 0.2545 | 0.9293 | 0.9076 | 0.9431 | 0.8713 | 0.909 |
114
+ | 0.2708 | 49.0 | 10682 | 0.2538 | 0.8846 | 0.9893 | 0.9793 | 0.0 | 0.2669 | 0.8903 | 0.4799 | 0.9213 | 0.9224 | 0.0 | 0.315 | 0.9284 | 0.9052 | 0.9383 | 0.8641 | 0.9065 |
115
+ | 0.2708 | 50.0 | 10900 | 0.2445 | 0.8919 | 0.9896 | 0.9745 | -1.0 | 0.2193 | 0.8972 | 0.4765 | 0.9228 | 0.925 | -1.0 | 0.3969 | 0.9294 | 0.9239 | 0.9511 | 0.8599 | 0.8989 |
116
+ | 0.2595 | 51.0 | 11118 | 0.2110 | 0.9037 | 0.99 | 0.9845 | -1.0 | 0.2267 | 0.9093 | 0.4882 | 0.9339 | 0.9346 | -1.0 | 0.25 | 0.9374 | 0.9299 | 0.9574 | 0.8776 | 0.9117 |
117
+ | 0.2595 | 52.0 | 11336 | 0.2374 | 0.897 | 0.99 | 0.9792 | -1.0 | 0.2066 | 0.9029 | 0.48 | 0.9267 | 0.9285 | -1.0 | 0.3179 | 0.9335 | 0.9257 | 0.9531 | 0.8684 | 0.9039 |
118
+ | 0.2378 | 53.0 | 11554 | 0.2517 | 0.8826 | 0.9894 | 0.9716 | -1.0 | 0.1494 | 0.8901 | 0.4782 | 0.9162 | 0.9188 | -1.0 | 0.2475 | 0.9242 | 0.9152 | 0.9455 | 0.8501 | 0.892 |
119
+ | 0.2378 | 54.0 | 11772 | 0.2260 | 0.8971 | 0.9899 | 0.9771 | -1.0 | 0.1848 | 0.9029 | 0.4825 | 0.9304 | 0.9315 | -1.0 | 0.2077 | 0.936 | 0.9255 | 0.9544 | 0.8687 | 0.9087 |
120
+ | 0.2378 | 55.0 | 11990 | 0.2144 | 0.9118 | 0.9899 | 0.9844 | -1.0 | 0.2843 | 0.9158 | 0.4875 | 0.9417 | 0.9435 | -1.0 | 0.3333 | 0.9456 | 0.9351 | 0.9608 | 0.8885 | 0.9263 |
121
+ | 0.2494 | 56.0 | 12208 | 0.2028 | 0.9107 | 0.9897 | 0.9814 | 0.0 | 0.1831 | 0.9168 | 0.4906 | 0.9395 | 0.9414 | 0.0 | 0.22 | 0.9466 | 0.935 | 0.9585 | 0.8864 | 0.9243 |
122
+ | 0.2494 | 57.0 | 12426 | 0.2341 | 0.8897 | 0.9897 | 0.9812 | -1.0 | 0.1783 | 0.8932 | 0.4822 | 0.9242 | 0.926 | -1.0 | 0.2154 | 0.9303 | 0.9168 | 0.948 | 0.8625 | 0.9039 |
123
+ | 0.2228 | 58.0 | 12644 | 0.2075 | 0.9084 | 0.9899 | 0.9792 | -1.0 | 0.1741 | 0.9142 | 0.4899 | 0.9375 | 0.9379 | -1.0 | 0.2308 | 0.9421 | 0.932 | 0.9581 | 0.8849 | 0.9177 |
124
+ | 0.2228 | 59.0 | 12862 | 0.2059 | 0.9096 | 0.9896 | 0.9803 | 0.0 | 0.2969 | 0.9138 | 0.4893 | 0.9375 | 0.9395 | 0.0 | 0.31 | 0.9431 | 0.9311 | 0.957 | 0.8881 | 0.9219 |
125
+ | 0.2218 | 60.0 | 13080 | 0.2028 | 0.9136 | 0.9899 | 0.984 | -1.0 | 0.2316 | 0.9164 | 0.4875 | 0.9408 | 0.9416 | -1.0 | 0.295 | 0.9442 | 0.9433 | 0.9654 | 0.884 | 0.9177 |
126
+ | 0.2218 | 61.0 | 13298 | 0.2013 | 0.911 | 0.99 | 0.9786 | -1.0 | 0.253 | 0.9158 | 0.4904 | 0.9388 | 0.94 | -1.0 | 0.3 | 0.9435 | 0.9325 | 0.9572 | 0.8895 | 0.9228 |
127
+ | 0.2238 | 62.0 | 13516 | 0.2033 | 0.9134 | 0.9899 | 0.9825 | 0.0 | 0.2228 | 0.9199 | 0.4896 | 0.9426 | 0.9438 | 0.0 | 0.2667 | 0.9484 | 0.9367 | 0.9624 | 0.8902 | 0.9252 |
128
+ | 0.2238 | 63.0 | 13734 | 0.1893 | 0.9216 | 0.99 | 0.9836 | -1.0 | 0.1905 | 0.9271 | 0.4942 | 0.9509 | 0.9512 | -1.0 | 0.235 | 0.9546 | 0.9403 | 0.9664 | 0.9029 | 0.9361 |
129
+ | 0.2238 | 64.0 | 13952 | 0.1893 | 0.9267 | 0.9898 | 0.9835 | 0.0 | 0.2342 | 0.9317 | 0.4957 | 0.9524 | 0.9536 | 0.0 | 0.2583 | 0.9585 | 0.9491 | 0.971 | 0.9043 | 0.9363 |
130
+ | 0.2131 | 65.0 | 14170 | 0.1769 | 0.9322 | 0.9901 | 0.9847 | -1.0 | 0.2413 | 0.9349 | 0.4982 | 0.9554 | 0.9559 | -1.0 | 0.2864 | 0.959 | 0.9463 | 0.9673 | 0.9181 | 0.9445 |
131
+ | 0.2131 | 66.0 | 14388 | 0.1848 | 0.9312 | 0.9898 | 0.9842 | 0.0 | 0.2901 | 0.9358 | 0.4973 | 0.9545 | 0.9551 | 0.0 | 0.425 | 0.9591 | 0.9517 | 0.9709 | 0.9107 | 0.9394 |
132
+ | 0.2038 | 67.0 | 14606 | 0.1809 | 0.9277 | 0.9899 | 0.9815 | 0.0 | 0.2354 | 0.9329 | 0.4951 | 0.9524 | 0.9539 | 0.0 | 0.2846 | 0.9586 | 0.9441 | 0.9668 | 0.9112 | 0.9411 |
133
+ | 0.2038 | 68.0 | 14824 | 0.1831 | 0.9178 | 0.9899 | 0.98 | 0.0 | 0.1728 | 0.9256 | 0.4922 | 0.9472 | 0.9483 | 0.0 | 0.23 | 0.9538 | 0.9396 | 0.9646 | 0.896 | 0.9319 |
134
+ | 0.1995 | 69.0 | 15042 | 0.1631 | 0.934 | 0.9901 | 0.9861 | -1.0 | 0.2804 | 0.9405 | 0.4982 | 0.9574 | 0.9583 | -1.0 | 0.325 | 0.9615 | 0.954 | 0.9729 | 0.914 | 0.9438 |
135
+ | 0.1995 | 70.0 | 15260 | 0.1685 | 0.9293 | 0.9899 | 0.9846 | -1.0 | 0.2397 | 0.935 | 0.4964 | 0.9546 | 0.9553 | -1.0 | 0.2714 | 0.9593 | 0.948 | 0.9698 | 0.9105 | 0.9408 |
136
+ | 0.1995 | 71.0 | 15478 | 0.1629 | 0.9371 | 0.9901 | 0.9842 | -1.0 | 0.2541 | 0.942 | 0.498 | 0.9603 | 0.9609 | -1.0 | 0.4964 | 0.965 | 0.954 | 0.9741 | 0.9202 | 0.9477 |
137
+ | 0.1877 | 72.0 | 15696 | 0.1606 | 0.944 | 0.9901 | 0.9846 | -1.0 | 0.277 | 0.9469 | 0.4988 | 0.9636 | 0.9642 | -1.0 | 0.3038 | 0.9676 | 0.96 | 0.9758 | 0.9281 | 0.9527 |
138
+ | 0.1877 | 73.0 | 15914 | 0.1532 | 0.9389 | 0.99 | 0.9806 | 0.0 | 0.2592 | 0.9446 | 0.5009 | 0.961 | 0.962 | 0.0 | 0.3133 | 0.9662 | 0.9564 | 0.9749 | 0.9214 | 0.9492 |
139
+ | 0.1912 | 74.0 | 16132 | 0.1434 | 0.9488 | 0.995 | 0.9934 | -1.0 | 0.5552 | 0.9507 | 0.5033 | 0.9673 | 0.9675 | -1.0 | 0.7182 | 0.969 | 0.9639 | 0.9786 | 0.9336 | 0.9563 |
140
+ | 0.1912 | 75.0 | 16350 | 0.1726 | 0.9309 | 0.9901 | 0.9832 | -1.0 | 0.216 | 0.9344 | 0.4964 | 0.9568 | 0.9578 | -1.0 | 0.2611 | 0.9607 | 0.9539 | 0.9747 | 0.9079 | 0.941 |
141
+ | 0.1859 | 76.0 | 16568 | 0.1587 | 0.9378 | 0.9901 | 0.9847 | -1.0 | 0.1684 | 0.944 | 0.4994 | 0.9601 | 0.9607 | -1.0 | 0.2382 | 0.9662 | 0.952 | 0.9715 | 0.9237 | 0.9499 |
142
+ | 0.1859 | 77.0 | 16786 | 0.1378 | 0.9509 | 0.9901 | 0.9845 | -1.0 | 0.2089 | 0.959 | 0.5047 | 0.9688 | 0.9691 | -1.0 | 0.2353 | 0.9748 | 0.9666 | 0.9823 | 0.9352 | 0.9559 |
143
+ | 0.1747 | 78.0 | 17004 | 0.1416 | 0.9478 | 0.9901 | 0.985 | 0.0 | 0.3334 | 0.9521 | 0.5039 | 0.9685 | 0.9692 | 0.0 | 0.35 | 0.9719 | 0.9617 | 0.9799 | 0.9338 | 0.9586 |
144
+ | 0.1747 | 79.0 | 17222 | 0.1615 | 0.9376 | 0.9949 | 0.9873 | -1.0 | 0.5057 | 0.9406 | 0.5003 | 0.9599 | 0.9607 | -1.0 | 0.5688 | 0.9644 | 0.9583 | 0.9746 | 0.917 | 0.9469 |
145
+ | 0.1747 | 80.0 | 17440 | 0.1482 | 0.9427 | 0.99 | 0.9823 | -1.0 | 0.1933 | 0.9499 | 0.5025 | 0.9639 | 0.9642 | -1.0 | 0.2321 | 0.9689 | 0.9566 | 0.9762 | 0.9289 | 0.9521 |
146
+ | 0.1707 | 81.0 | 17658 | 0.1379 | 0.9518 | 0.9901 | 0.9894 | -1.0 | 0.2838 | 0.956 | 0.504 | 0.97 | 0.9702 | -1.0 | 0.3 | 0.9742 | 0.965 | 0.9787 | 0.9386 | 0.9618 |
147
+ | 0.1707 | 82.0 | 17876 | 0.1384 | 0.9478 | 0.9901 | 0.9846 | -1.0 | 0.2518 | 0.9545 | 0.504 | 0.9687 | 0.9691 | -1.0 | 0.2643 | 0.9734 | 0.9612 | 0.9787 | 0.9344 | 0.9595 |
148
+ | 0.1658 | 83.0 | 18094 | 0.1379 | 0.9532 | 0.9901 | 0.9845 | -1.0 | 0.2543 | 0.9567 | 0.5043 | 0.9707 | 0.9714 | -1.0 | 0.2708 | 0.975 | 0.9655 | 0.981 | 0.9408 | 0.9617 |
149
+ | 0.1658 | 84.0 | 18312 | 0.1325 | 0.9544 | 0.9901 | 0.9845 | 0.0 | 0.256 | 0.9597 | 0.5047 | 0.9712 | 0.972 | 0.0 | 0.3036 | 0.9762 | 0.9672 | 0.9811 | 0.9417 | 0.9628 |
150
+ | 0.1532 | 85.0 | 18530 | 0.1558 | 0.9452 | 0.99 | 0.9845 | -1.0 | 0.2469 | 0.9495 | 0.5009 | 0.9648 | 0.9657 | -1.0 | 0.2769 | 0.9695 | 0.9584 | 0.9749 | 0.932 | 0.9565 |
151
+ | 0.1532 | 86.0 | 18748 | 0.1228 | 0.9538 | 0.9901 | 0.9841 | -1.0 | 0.3437 | 0.9585 | 0.5056 | 0.972 | 0.9726 | -1.0 | 0.3727 | 0.9747 | 0.9642 | 0.9806 | 0.9434 | 0.9646 |
152
+ | 0.1532 | 87.0 | 18966 | 0.1317 | 0.9587 | 0.9901 | 0.9844 | 0.0 | 0.4141 | 0.965 | 0.5064 | 0.9738 | 0.974 | 0.0 | 0.4517 | 0.9791 | 0.9676 | 0.9815 | 0.9498 | 0.9664 |
153
+ | 0.1574 | 88.0 | 19184 | 0.1318 | 0.9508 | 0.9901 | 0.9845 | 0.0 | 0.2545 | 0.9581 | 0.5059 | 0.9705 | 0.9706 | 0.0 | 0.2962 | 0.9747 | 0.9594 | 0.9778 | 0.9422 | 0.9633 |
154
+ | 0.1574 | 89.0 | 19402 | 0.1424 | 0.9513 | 0.9899 | 0.984 | -1.0 | 0.2362 | 0.9547 | 0.5034 | 0.9691 | 0.9695 | -1.0 | 0.2875 | 0.9729 | 0.9636 | 0.9786 | 0.939 | 0.9603 |
155
+ | 0.1537 | 90.0 | 19620 | 0.1240 | 0.9565 | 0.9901 | 0.9896 | -1.0 | 0.5053 | 0.9592 | 0.5066 | 0.9747 | 0.9752 | -1.0 | 0.55 | 0.9771 | 0.9669 | 0.9823 | 0.9461 | 0.9681 |
156
+ | 0.1537 | 91.0 | 19838 | 0.1382 | 0.947 | 0.9901 | 0.9835 | 0.0 | 0.5316 | 0.9504 | 0.5018 | 0.9681 | 0.9683 | 0.0 | 0.555 | 0.9712 | 0.9622 | 0.9775 | 0.9319 | 0.9592 |
157
+ | 0.1547 | 92.0 | 20056 | 0.1276 | 0.9565 | 0.9901 | 0.983 | -1.0 | 0.3161 | 0.9618 | 0.5058 | 0.9742 | 0.9743 | -1.0 | 0.3458 | 0.977 | 0.9668 | 0.9818 | 0.9462 | 0.9669 |
158
+ | 0.1547 | 93.0 | 20274 | 0.1329 | 0.9539 | 0.99 | 0.9836 | -1.0 | 0.2997 | 0.9593 | 0.5053 | 0.9718 | 0.9728 | -1.0 | 0.3318 | 0.9754 | 0.9679 | 0.982 | 0.9398 | 0.9635 |
159
+ | 0.1547 | 94.0 | 20492 | 0.1348 | 0.9571 | 0.99 | 0.9846 | -1.0 | 0.3267 | 0.9615 | 0.5039 | 0.9732 | 0.9737 | -1.0 | 0.3625 | 0.9761 | 0.9678 | 0.9823 | 0.9463 | 0.9652 |
160
+ | 0.1513 | 95.0 | 20710 | 0.1251 | 0.9546 | 0.9901 | 0.9844 | 0.0 | 0.2549 | 0.9626 | 0.5049 | 0.9728 | 0.9731 | 0.0 | 0.2625 | 0.9775 | 0.965 | 0.981 | 0.9442 | 0.9652 |
161
+ | 0.1513 | 96.0 | 20928 | 0.1264 | 0.9594 | 0.9901 | 0.9899 | 0.0 | 0.327 | 0.9631 | 0.5068 | 0.9755 | 0.9763 | 0.0 | 0.3409 | 0.9794 | 0.9696 | 0.9842 | 0.9492 | 0.9683 |
162
+ | 0.1635 | 97.0 | 21146 | 0.1306 | 0.9515 | 0.9901 | 0.9843 | -1.0 | 0.2685 | 0.9561 | 0.5041 | 0.9696 | 0.9703 | -1.0 | 0.2857 | 0.9742 | 0.9626 | 0.9795 | 0.9404 | 0.9611 |
163
+ | 0.1635 | 98.0 | 21364 | 0.1410 | 0.9481 | 0.9899 | 0.9788 | 0.0 | 0.4025 | 0.9542 | 0.5031 | 0.9662 | 0.9678 | 0.0 | 0.4458 | 0.9722 | 0.9621 | 0.9789 | 0.9341 | 0.9567 |
164
+ | 0.1505 | 99.0 | 21582 | 0.1253 | 0.9571 | 0.9901 | 0.984 | -1.0 | 0.3105 | 0.962 | 0.5066 | 0.9737 | 0.974 | -1.0 | 0.3375 | 0.9777 | 0.9702 | 0.9832 | 0.944 | 0.9648 |
165
+ | 0.1505 | 100.0 | 21800 | 0.1291 | 0.9532 | 0.9901 | 0.9845 | -1.0 | 0.3203 | 0.9578 | 0.5044 | 0.9715 | 0.972 | -1.0 | 0.3538 | 0.9747 | 0.9618 | 0.9775 | 0.9447 | 0.9664 |
166
+
167
+
168
+ ### Framework versions
169
+
170
+ - Transformers 4.42.3
171
+ - Pytorch 2.3.1+cu121
172
+ - Datasets 2.20.0
173
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3e781e8107b8b0dbcdae9e03c3eb7012a87ddf6900f170e72627c7b570d8812d
3
  size 174076712
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db39f7158e7ed53ee599f8f5cbf767c2c781d9dec01fa18f793934bcade297d5
3
  size 174076712