macedonizer
commited on
Commit
·
c452b04
1
Parent(s):
ba5128a
initial commit
Browse files- README.md +65 -0
- config.json +30 -0
- lets-talk-about-nlp-hr.jpg +0 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- sr
|
4 |
+
thumbnail: https://huggingface.co/macedonizer/sr-gpt2/desanka-maksimovic.jpeg
|
5 |
+
license: Apache 2.0
|
6 |
+
datasets:
|
7 |
+
- wiki-sr
|
8 |
+
---
|
9 |
+
|
10 |
+
# sr-gpt2
|
11 |
+
Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
|
12 |
+
Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in
|
13 |
+
[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
|
14 |
+
and first released at [this page](https://openai.com/blog/better-language-models/).
|
15 |
+
|
16 |
+
## Model description
|
17 |
+
sr-gpt2 is a transformers model pretrained on a very large corpus of Serbian data in a self-supervised fashion. This
|
18 |
+
means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots
|
19 |
+
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
|
20 |
+
it was trained to guess the next word in sentences.
|
21 |
+
More precisely, inputs are sequences of the continuous text of a certain length and the targets are the same sequence,
|
22 |
+
shifted one token (word or piece of the word) to the right. The model uses internally a mask-mechanism to make sure the
|
23 |
+
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
|
24 |
+
This way, the model learns an inner representation of the Macedonian language that can then be used to extract features
|
25 |
+
useful for downstream tasks. The model is best at what it was pretrained for, however, which is generating texts from a
|
26 |
+
prompt.
|
27 |
+
|
28 |
+
### How to use
|
29 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
30 |
+
|
31 |
+
import random \
|
32 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained('macedonizer/sr-gpt2') \
|
35 |
+
model = AutoModelWithLMHead.from_pretrained('macedonizer/sr-gpt2')
|
36 |
+
|
37 |
+
input_text = 'Ја сам био '
|
38 |
+
|
39 |
+
if len(input_text) == 0: \
|
40 |
+
encoded_input = tokenizer(input_text, return_tensors="pt") \
|
41 |
+
output = model.generate( \
|
42 |
+
bos_token_id=random.randint(1, 50000), \
|
43 |
+
do_sample=True, \
|
44 |
+
top_k=50, \
|
45 |
+
max_length=1024, \
|
46 |
+
top_p=0.95, \
|
47 |
+
num_return_sequences=1, \
|
48 |
+
) \
|
49 |
+
else: \
|
50 |
+
encoded_input = tokenizer(input_text, return_tensors="pt") \
|
51 |
+
output = model.generate( \
|
52 |
+
**encoded_input, \
|
53 |
+
bos_token_id=random.randint(1, 50000), \
|
54 |
+
do_sample=True, \
|
55 |
+
top_k=50, \
|
56 |
+
max_length=1024, \
|
57 |
+
top_p=0.95, \
|
58 |
+
num_return_sequences=1, \
|
59 |
+
)
|
60 |
+
|
61 |
+
decoded_output = [] \
|
62 |
+
for sample in output: \
|
63 |
+
decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True))
|
64 |
+
|
65 |
+
print(decoded_output)
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "gelu_new",
|
3 |
+
"architectures": [
|
4 |
+
"GPT2LMHeadModel"
|
5 |
+
],
|
6 |
+
"attn_pdrop": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"embd_pdrop": 0.1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"layer_norm_epsilon": 1e-05,
|
13 |
+
"model_type": "gpt2",
|
14 |
+
"n_ctx": 1024,
|
15 |
+
"n_embd": 768,
|
16 |
+
"n_head": 12,
|
17 |
+
"n_inner": null,
|
18 |
+
"n_layer": 12,
|
19 |
+
"n_positions": 1024,
|
20 |
+
"resid_pdrop": 0.1,
|
21 |
+
"scale_attn_weights": true,
|
22 |
+
"summary_activation": null,
|
23 |
+
"summary_first_dropout": 0.1,
|
24 |
+
"summary_proj_to_labels": true,
|
25 |
+
"summary_type": "cls_index",
|
26 |
+
"summary_use_proj": true,
|
27 |
+
"transformers_version": "4.6.1",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 52000
|
30 |
+
}
|
lets-talk-about-nlp-hr.jpg
ADDED
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43f9aa53870e53cc45965b87137b69dd8ed72e7aac32222ec0fa22f2bf137fe8
|
3 |
+
size 515758313
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c35c1f76fff922e01f442bab83c8f1c3d114a87966eed2ce5e6aaee437ccdd04
|
3 |
+
size 2479
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|