antoinelouis
commited on
Commit
·
fdd76a2
1
Parent(s):
473d20c
Update README.md
Browse files
README.md
CHANGED
@@ -57,8 +57,8 @@ def mean_pooling(model_output, attention_mask):
|
|
57 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
58 |
|
59 |
# Load model from HuggingFace Hub
|
60 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
61 |
-
model = AutoModel.from_pretrained('
|
62 |
|
63 |
# Tokenize sentences
|
64 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -79,7 +79,7 @@ We evaluate the model on the test set of LLeQA, which consists of 195 legal ques
|
|
79 |
|
80 |
| MRR@10 | NDCG@10 | MAP@10 | R@10 | R@100 | R@500 |
|
81 |
|---------:|----------:|---------:|-------:|--------:|--------:|
|
82 |
-
|
|
83 |
|
84 |
## Training
|
85 |
***
|
|
|
57 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
58 |
|
59 |
# Load model from HuggingFace Hub
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained('maastrichtlawtech/camembert-base-lleqa')
|
61 |
+
model = AutoModel.from_pretrained('maastrichtlawtech/camembert-base-lleqa')
|
62 |
|
63 |
# Tokenize sentences
|
64 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
79 |
|
80 |
| MRR@10 | NDCG@10 | MAP@10 | R@10 | R@100 | R@500 |
|
81 |
|---------:|----------:|---------:|-------:|--------:|--------:|
|
82 |
+
| 36.55 | 39.27 | 30.64 | 58.27 | 82.43 | 92.41 |
|
83 |
|
84 |
## Training
|
85 |
***
|