Initial model
Browse files- .ipynb_checkpoints/README-checkpoint.md +272 -0
- README.md +272 -0
- all_results.json +24 -0
- config.json +76 -0
- eval_results.json +12 -0
- predictions.csv +0 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- result.bin +3 -0
- sample1123.flac +0 -0
- sample910.flac +0 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- train_results.json +15 -0
- trainer_state.json +149 -0
- training_args.bin +3 -0
- vocab.json +1 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: et
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
tags:
|
6 |
+
- audio
|
7 |
+
- automatic-speech-recognition
|
8 |
+
- speech
|
9 |
+
- xlsr-fine-tuning-week
|
10 |
+
license: apache-2.0
|
11 |
+
widget:
|
12 |
+
- label: Common Voice sample 1123
|
13 |
+
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-estonian/resolve/main/sample1123.flac
|
14 |
+
- label: Common Voice sample 910
|
15 |
+
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-estonian/resolve/main/sample910.flac
|
16 |
+
model-index:
|
17 |
+
- name: XLSR Wav2Vec2 Estonian by Mehrdad Farahani
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
name: Speech Recognition
|
21 |
+
type: automatic-speech-recognition
|
22 |
+
dataset:
|
23 |
+
name: Common Voice et
|
24 |
+
type: common_voice
|
25 |
+
args: et
|
26 |
+
metrics:
|
27 |
+
- name: Test WER
|
28 |
+
type: wer
|
29 |
+
value: 33.73
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
# Wav2Vec2-Large-XLSR-53-Estonian
|
34 |
+
|
35 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Estonian using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz.
|
36 |
+
|
37 |
+
## Usage
|
38 |
+
The model can be used directly (without a language model) as follows:
|
39 |
+
|
40 |
+
**Requirements**
|
41 |
+
```bash
|
42 |
+
# requirement packages
|
43 |
+
!pip install git+https://github.com/huggingface/datasets.git
|
44 |
+
!pip install git+https://github.com/huggingface/transformers.git
|
45 |
+
!pip install torchaudio
|
46 |
+
!pip install librosa
|
47 |
+
!pip install jiwer
|
48 |
+
```
|
49 |
+
|
50 |
+
|
51 |
+
**Prediction**
|
52 |
+
```python
|
53 |
+
import librosa
|
54 |
+
import torch
|
55 |
+
import torchaudio
|
56 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
57 |
+
from datasets import load_dataset
|
58 |
+
|
59 |
+
import numpy as np
|
60 |
+
import re
|
61 |
+
import string
|
62 |
+
|
63 |
+
import IPython.display as ipd
|
64 |
+
|
65 |
+
chars_to_ignore = [
|
66 |
+
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
|
67 |
+
"#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"',
|
68 |
+
"“", "%", "‘", "�", "–", "…", "_", "”", '“', '„'
|
69 |
+
]
|
70 |
+
chars_to_mapping = {
|
71 |
+
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
|
72 |
+
}
|
73 |
+
|
74 |
+
def multiple_replace(text, chars_to_mapping):
|
75 |
+
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
|
76 |
+
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
|
77 |
+
|
78 |
+
def remove_special_characters(text, chars_to_ignore_regex):
|
79 |
+
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
|
80 |
+
return text
|
81 |
+
|
82 |
+
def normalizer(batch, chars_to_ignore, chars_to_mapping):
|
83 |
+
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
|
84 |
+
text = batch["sentence"].lower().strip()
|
85 |
+
|
86 |
+
text = text.replace("\u0307", " ").strip()
|
87 |
+
text = multiple_replace(text, chars_to_mapping)
|
88 |
+
text = remove_special_characters(text, chars_to_ignore_regex)
|
89 |
+
|
90 |
+
batch["sentence"] = text
|
91 |
+
return batch
|
92 |
+
|
93 |
+
|
94 |
+
def speech_file_to_array_fn(batch):
|
95 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
96 |
+
speech_array = speech_array.squeeze().numpy()
|
97 |
+
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
|
98 |
+
|
99 |
+
batch["speech"] = speech_array
|
100 |
+
return batch
|
101 |
+
|
102 |
+
|
103 |
+
def predict(batch):
|
104 |
+
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
105 |
+
|
106 |
+
input_values = features.input_values.to(device)
|
107 |
+
attention_mask = features.attention_mask.to(device)
|
108 |
+
|
109 |
+
with torch.no_grad():
|
110 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
111 |
+
|
112 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
113 |
+
|
114 |
+
batch["predicted"] = processor.batch_decode(pred_ids)[0]
|
115 |
+
return batch
|
116 |
+
|
117 |
+
|
118 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
119 |
+
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian")
|
120 |
+
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian").to(device)
|
121 |
+
|
122 |
+
dataset = load_dataset("common_voice", "et", split="test[:1%]")
|
123 |
+
dataset = dataset.map(
|
124 |
+
normalizer,
|
125 |
+
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
|
126 |
+
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
|
127 |
+
)
|
128 |
+
|
129 |
+
dataset = dataset.map(speech_file_to_array_fn)
|
130 |
+
result = dataset.map(predict)
|
131 |
+
|
132 |
+
max_items = np.random.randint(0, len(result), 10).tolist()
|
133 |
+
for i in max_items:
|
134 |
+
reference, predicted = result["sentence"][i], result["predicted"][i]
|
135 |
+
print("reference:", reference)
|
136 |
+
print("predicted:", predicted)
|
137 |
+
print('---')
|
138 |
+
```
|
139 |
+
|
140 |
+
**Output:**
|
141 |
+
```text
|
142 |
+
reference: õhulossid lagunevad ning ees ootab maapind
|
143 |
+
predicted: õhulassid lagunevad ning ees ootab maapind
|
144 |
+
---
|
145 |
+
reference: milliseks kiievisse pääsemise nimel võistlev muusik soome muusikamaastiku hetkeseisu hindab ning kas ta ka ennast sellel tulevikus tegutsemas näeb kuuled videost
|
146 |
+
predicted: milliseks gievisse pääsemise nimel võitlev muusiks soome muusikama aastiku hetke seisu hindab ning kas ta ennast selle tulevikus tegutsemast näeb kuulad videost
|
147 |
+
---
|
148 |
+
reference: näiteks kui pool seina on tehtud tekib tunne et tahaks tegelikult natuke teistsugust ja hakkame otsast peale
|
149 |
+
predicted: näiteks kui pool seine on tehtud tekib tunnetahaks tegelikult matuka teistsugust jahappanna otsast peane
|
150 |
+
---
|
151 |
+
reference: neuroesteetilised katsed näitavad et just nägude vaatlemine aktiveerib inimese aju esteetilist keskust
|
152 |
+
predicted: neuroaisteetiliselt katsed näitaval et just nägude vaatlemine aptiveerid inimese aju est eedilist keskust
|
153 |
+
---
|
154 |
+
reference: paljud inimesed kindlasti kadestavad teid kuid ei julge samamoodi vabalt võtta
|
155 |
+
predicted: paljud inimesed kindlasti kadestavadteid kuid ei julge sama moodi vabalt võtta
|
156 |
+
---
|
157 |
+
reference: parem on otsida pileteid inkognito veebi kaudu
|
158 |
+
predicted: parem on otsida pileteid ning kognitu veebikaudu
|
159 |
+
---
|
160 |
+
reference: ja vot siin ma jäin vaikseks
|
161 |
+
predicted: ja vat siisma ja invaikseks
|
162 |
+
---
|
163 |
+
reference: mida sa iseendale juubeli puhul soovid
|
164 |
+
predicted: mida saise endale jubeli puhul soovid
|
165 |
+
---
|
166 |
+
reference: kuumuse ja kõrge temperatuuri tõttu kuivas tühjadel karjamaadel rohi mis muutus kergesti süttivaks
|
167 |
+
predicted: kuumuse ja kõrge temperatuuri tõttu kuivast ühjadal karjamaadel rohi mis muutus kergesti süttivaks
|
168 |
+
---
|
169 |
+
reference: ilmselt on inimesi kelle jaoks on see hea lahendus
|
170 |
+
predicted: ilmselt on inimesi kelle jaoks on see hea lahendus
|
171 |
+
---
|
172 |
+
```
|
173 |
+
|
174 |
+
|
175 |
+
## Evaluation
|
176 |
+
|
177 |
+
The model can be evaluated as follows on the Estonian test data of Common Voice.
|
178 |
+
|
179 |
+
```python
|
180 |
+
import librosa
|
181 |
+
import torch
|
182 |
+
import torchaudio
|
183 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
184 |
+
from datasets import load_dataset, load_metric
|
185 |
+
|
186 |
+
import numpy as np
|
187 |
+
import re
|
188 |
+
import string
|
189 |
+
|
190 |
+
|
191 |
+
chars_to_ignore = [
|
192 |
+
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
|
193 |
+
"#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"',
|
194 |
+
"“", "%", "‘", "�", "–", "…", "_", "”", '“', '„'
|
195 |
+
]
|
196 |
+
chars_to_mapping = {
|
197 |
+
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
|
198 |
+
}
|
199 |
+
|
200 |
+
def multiple_replace(text, chars_to_mapping):
|
201 |
+
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
|
202 |
+
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
|
203 |
+
|
204 |
+
def remove_special_characters(text, chars_to_ignore_regex):
|
205 |
+
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
|
206 |
+
return text
|
207 |
+
|
208 |
+
def normalizer(batch, chars_to_ignore, chars_to_mapping):
|
209 |
+
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
|
210 |
+
text = batch["sentence"].lower().strip()
|
211 |
+
|
212 |
+
text = multiple_replace(text, chars_to_mapping)
|
213 |
+
text = remove_special_characters(text, chars_to_ignore_regex)
|
214 |
+
|
215 |
+
batch["sentence"] = text
|
216 |
+
return batch
|
217 |
+
|
218 |
+
|
219 |
+
def speech_file_to_array_fn(batch):
|
220 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
221 |
+
speech_array = speech_array.squeeze().numpy()
|
222 |
+
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
|
223 |
+
|
224 |
+
batch["speech"] = speech_array
|
225 |
+
return batch
|
226 |
+
|
227 |
+
|
228 |
+
def predict(batch):
|
229 |
+
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
230 |
+
|
231 |
+
input_values = features.input_values.to(device)
|
232 |
+
attention_mask = features.attention_mask.to(device)
|
233 |
+
|
234 |
+
with torch.no_grad():
|
235 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
236 |
+
|
237 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
238 |
+
|
239 |
+
batch["predicted"] = processor.batch_decode(pred_ids)[0]
|
240 |
+
return batch
|
241 |
+
|
242 |
+
|
243 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
244 |
+
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian")
|
245 |
+
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian").to(device)
|
246 |
+
|
247 |
+
dataset = load_dataset("common_voice", "et", split="test")
|
248 |
+
dataset = dataset.map(
|
249 |
+
normalizer,
|
250 |
+
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
|
251 |
+
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
|
252 |
+
)
|
253 |
+
|
254 |
+
dataset = dataset.map(speech_file_to_array_fn)
|
255 |
+
result = dataset.map(predict)
|
256 |
+
|
257 |
+
wer = load_metric("wer")
|
258 |
+
|
259 |
+
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
|
260 |
+
```
|
261 |
+
]
|
262 |
+
|
263 |
+
**Test Result**:
|
264 |
+
- WER: 33.73%
|
265 |
+
|
266 |
+
|
267 |
+
## Training & Report
|
268 |
+
The Common Voice `train`, `validation` datasets were used for training.
|
269 |
+
|
270 |
+
You can see the training states [here](https://wandb.ai/m3hrdadfi/finetuned_wav2vec_xlsr_estonian/reports/Fine-Tuning-for-Wav2Vec2-Large-XLSR-53-Estonian--Vmlldzo1NjA1MTI?accessToken=k2b2g3a2i12m1sdwf13q8b226pplmmyw12joxo6vk38eb4djellfzmn9fp2725fw)
|
271 |
+
|
272 |
+
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Estonian_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb)
|
README.md
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: et
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
tags:
|
6 |
+
- audio
|
7 |
+
- automatic-speech-recognition
|
8 |
+
- speech
|
9 |
+
- xlsr-fine-tuning-week
|
10 |
+
license: apache-2.0
|
11 |
+
widget:
|
12 |
+
- label: Common Voice sample 1123
|
13 |
+
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-estonian/resolve/main/sample1123.flac
|
14 |
+
- label: Common Voice sample 910
|
15 |
+
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-estonian/resolve/main/sample910.flac
|
16 |
+
model-index:
|
17 |
+
- name: XLSR Wav2Vec2 Estonian by Mehrdad Farahani
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
name: Speech Recognition
|
21 |
+
type: automatic-speech-recognition
|
22 |
+
dataset:
|
23 |
+
name: Common Voice et
|
24 |
+
type: common_voice
|
25 |
+
args: et
|
26 |
+
metrics:
|
27 |
+
- name: Test WER
|
28 |
+
type: wer
|
29 |
+
value: 33.73
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
# Wav2Vec2-Large-XLSR-53-Estonian
|
34 |
+
|
35 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Estonian using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz.
|
36 |
+
|
37 |
+
## Usage
|
38 |
+
The model can be used directly (without a language model) as follows:
|
39 |
+
|
40 |
+
**Requirements**
|
41 |
+
```bash
|
42 |
+
# requirement packages
|
43 |
+
!pip install git+https://github.com/huggingface/datasets.git
|
44 |
+
!pip install git+https://github.com/huggingface/transformers.git
|
45 |
+
!pip install torchaudio
|
46 |
+
!pip install librosa
|
47 |
+
!pip install jiwer
|
48 |
+
```
|
49 |
+
|
50 |
+
|
51 |
+
**Prediction**
|
52 |
+
```python
|
53 |
+
import librosa
|
54 |
+
import torch
|
55 |
+
import torchaudio
|
56 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
57 |
+
from datasets import load_dataset
|
58 |
+
|
59 |
+
import numpy as np
|
60 |
+
import re
|
61 |
+
import string
|
62 |
+
|
63 |
+
import IPython.display as ipd
|
64 |
+
|
65 |
+
chars_to_ignore = [
|
66 |
+
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
|
67 |
+
"#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"',
|
68 |
+
"“", "%", "‘", "�", "–", "…", "_", "”", '“', '„'
|
69 |
+
]
|
70 |
+
chars_to_mapping = {
|
71 |
+
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
|
72 |
+
}
|
73 |
+
|
74 |
+
def multiple_replace(text, chars_to_mapping):
|
75 |
+
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
|
76 |
+
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
|
77 |
+
|
78 |
+
def remove_special_characters(text, chars_to_ignore_regex):
|
79 |
+
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
|
80 |
+
return text
|
81 |
+
|
82 |
+
def normalizer(batch, chars_to_ignore, chars_to_mapping):
|
83 |
+
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
|
84 |
+
text = batch["sentence"].lower().strip()
|
85 |
+
|
86 |
+
text = text.replace("\u0307", " ").strip()
|
87 |
+
text = multiple_replace(text, chars_to_mapping)
|
88 |
+
text = remove_special_characters(text, chars_to_ignore_regex)
|
89 |
+
|
90 |
+
batch["sentence"] = text
|
91 |
+
return batch
|
92 |
+
|
93 |
+
|
94 |
+
def speech_file_to_array_fn(batch):
|
95 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
96 |
+
speech_array = speech_array.squeeze().numpy()
|
97 |
+
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
|
98 |
+
|
99 |
+
batch["speech"] = speech_array
|
100 |
+
return batch
|
101 |
+
|
102 |
+
|
103 |
+
def predict(batch):
|
104 |
+
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
105 |
+
|
106 |
+
input_values = features.input_values.to(device)
|
107 |
+
attention_mask = features.attention_mask.to(device)
|
108 |
+
|
109 |
+
with torch.no_grad():
|
110 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
111 |
+
|
112 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
113 |
+
|
114 |
+
batch["predicted"] = processor.batch_decode(pred_ids)[0]
|
115 |
+
return batch
|
116 |
+
|
117 |
+
|
118 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
119 |
+
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian")
|
120 |
+
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian").to(device)
|
121 |
+
|
122 |
+
dataset = load_dataset("common_voice", "et", split="test[:1%]")
|
123 |
+
dataset = dataset.map(
|
124 |
+
normalizer,
|
125 |
+
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
|
126 |
+
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
|
127 |
+
)
|
128 |
+
|
129 |
+
dataset = dataset.map(speech_file_to_array_fn)
|
130 |
+
result = dataset.map(predict)
|
131 |
+
|
132 |
+
max_items = np.random.randint(0, len(result), 10).tolist()
|
133 |
+
for i in max_items:
|
134 |
+
reference, predicted = result["sentence"][i], result["predicted"][i]
|
135 |
+
print("reference:", reference)
|
136 |
+
print("predicted:", predicted)
|
137 |
+
print('---')
|
138 |
+
```
|
139 |
+
|
140 |
+
**Output:**
|
141 |
+
```text
|
142 |
+
reference: õhulossid lagunevad ning ees ootab maapind
|
143 |
+
predicted: õhulassid lagunevad ning ees ootab maapind
|
144 |
+
---
|
145 |
+
reference: milliseks kiievisse pääsemise nimel võistlev muusik soome muusikamaastiku hetkeseisu hindab ning kas ta ka ennast sellel tulevikus tegutsemas näeb kuuled videost
|
146 |
+
predicted: milliseks gievisse pääsemise nimel võitlev muusiks soome muusikama aastiku hetke seisu hindab ning kas ta ennast selle tulevikus tegutsemast näeb kuulad videost
|
147 |
+
---
|
148 |
+
reference: näiteks kui pool seina on tehtud tekib tunne et tahaks tegelikult natuke teistsugust ja hakkame otsast peale
|
149 |
+
predicted: näiteks kui pool seine on tehtud tekib tunnetahaks tegelikult matuka teistsugust jahappanna otsast peane
|
150 |
+
---
|
151 |
+
reference: neuroesteetilised katsed näitavad et just nägude vaatlemine aktiveerib inimese aju esteetilist keskust
|
152 |
+
predicted: neuroaisteetiliselt katsed näitaval et just nägude vaatlemine aptiveerid inimese aju est eedilist keskust
|
153 |
+
---
|
154 |
+
reference: paljud inimesed kindlasti kadestavad teid kuid ei julge samamoodi vabalt võtta
|
155 |
+
predicted: paljud inimesed kindlasti kadestavadteid kuid ei julge sama moodi vabalt võtta
|
156 |
+
---
|
157 |
+
reference: parem on otsida pileteid inkognito veebi kaudu
|
158 |
+
predicted: parem on otsida pileteid ning kognitu veebikaudu
|
159 |
+
---
|
160 |
+
reference: ja vot siin ma jäin vaikseks
|
161 |
+
predicted: ja vat siisma ja invaikseks
|
162 |
+
---
|
163 |
+
reference: mida sa iseendale juubeli puhul soovid
|
164 |
+
predicted: mida saise endale jubeli puhul soovid
|
165 |
+
---
|
166 |
+
reference: kuumuse ja kõrge temperatuuri tõttu kuivas tühjadel karjamaadel rohi mis muutus kergesti süttivaks
|
167 |
+
predicted: kuumuse ja kõrge temperatuuri tõttu kuivast ühjadal karjamaadel rohi mis muutus kergesti süttivaks
|
168 |
+
---
|
169 |
+
reference: ilmselt on inimesi kelle jaoks on see hea lahendus
|
170 |
+
predicted: ilmselt on inimesi kelle jaoks on see hea lahendus
|
171 |
+
---
|
172 |
+
```
|
173 |
+
|
174 |
+
|
175 |
+
## Evaluation
|
176 |
+
|
177 |
+
The model can be evaluated as follows on the Estonian test data of Common Voice.
|
178 |
+
|
179 |
+
```python
|
180 |
+
import librosa
|
181 |
+
import torch
|
182 |
+
import torchaudio
|
183 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
184 |
+
from datasets import load_dataset, load_metric
|
185 |
+
|
186 |
+
import numpy as np
|
187 |
+
import re
|
188 |
+
import string
|
189 |
+
|
190 |
+
|
191 |
+
chars_to_ignore = [
|
192 |
+
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
|
193 |
+
"#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"',
|
194 |
+
"“", "%", "‘", "�", "–", "…", "_", "”", '“', '„'
|
195 |
+
]
|
196 |
+
chars_to_mapping = {
|
197 |
+
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
|
198 |
+
}
|
199 |
+
|
200 |
+
def multiple_replace(text, chars_to_mapping):
|
201 |
+
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
|
202 |
+
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
|
203 |
+
|
204 |
+
def remove_special_characters(text, chars_to_ignore_regex):
|
205 |
+
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
|
206 |
+
return text
|
207 |
+
|
208 |
+
def normalizer(batch, chars_to_ignore, chars_to_mapping):
|
209 |
+
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
|
210 |
+
text = batch["sentence"].lower().strip()
|
211 |
+
|
212 |
+
text = multiple_replace(text, chars_to_mapping)
|
213 |
+
text = remove_special_characters(text, chars_to_ignore_regex)
|
214 |
+
|
215 |
+
batch["sentence"] = text
|
216 |
+
return batch
|
217 |
+
|
218 |
+
|
219 |
+
def speech_file_to_array_fn(batch):
|
220 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
221 |
+
speech_array = speech_array.squeeze().numpy()
|
222 |
+
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
|
223 |
+
|
224 |
+
batch["speech"] = speech_array
|
225 |
+
return batch
|
226 |
+
|
227 |
+
|
228 |
+
def predict(batch):
|
229 |
+
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
230 |
+
|
231 |
+
input_values = features.input_values.to(device)
|
232 |
+
attention_mask = features.attention_mask.to(device)
|
233 |
+
|
234 |
+
with torch.no_grad():
|
235 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
236 |
+
|
237 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
238 |
+
|
239 |
+
batch["predicted"] = processor.batch_decode(pred_ids)[0]
|
240 |
+
return batch
|
241 |
+
|
242 |
+
|
243 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
244 |
+
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian")
|
245 |
+
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-estonian").to(device)
|
246 |
+
|
247 |
+
dataset = load_dataset("common_voice", "et", split="test")
|
248 |
+
dataset = dataset.map(
|
249 |
+
normalizer,
|
250 |
+
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
|
251 |
+
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
|
252 |
+
)
|
253 |
+
|
254 |
+
dataset = dataset.map(speech_file_to_array_fn)
|
255 |
+
result = dataset.map(predict)
|
256 |
+
|
257 |
+
wer = load_metric("wer")
|
258 |
+
|
259 |
+
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
|
260 |
+
```
|
261 |
+
]
|
262 |
+
|
263 |
+
**Test Result**:
|
264 |
+
- WER: 33.73%
|
265 |
+
|
266 |
+
|
267 |
+
## Training & Report
|
268 |
+
The Common Voice `train`, `validation` datasets were used for training.
|
269 |
+
|
270 |
+
You can see the training states [here](https://wandb.ai/m3hrdadfi/finetuned_wav2vec_xlsr_estonian/reports/Fine-Tuning-for-Wav2Vec2-Large-XLSR-53-Estonian--Vmlldzo1NjA1MTI?accessToken=k2b2g3a2i12m1sdwf13q8b226pplmmyw12joxo6vk38eb4djellfzmn9fp2725fw)
|
271 |
+
|
272 |
+
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Estonian_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb)
|
all_results.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"eval_loss": 0.35807397961616516,
|
4 |
+
"eval_mem_cpu_alloc_delta": 204106932,
|
5 |
+
"eval_mem_cpu_peaked_delta": 25299703,
|
6 |
+
"eval_mem_gpu_alloc_delta": 0,
|
7 |
+
"eval_mem_gpu_peaked_delta": 6155822592,
|
8 |
+
"eval_runtime": 345.8016,
|
9 |
+
"eval_samples": 2509,
|
10 |
+
"eval_samples_per_second": 7.256,
|
11 |
+
"eval_wer": 0.35535428875865743,
|
12 |
+
"init_mem_cpu_alloc_delta": 9477734,
|
13 |
+
"init_mem_cpu_peaked_delta": 18306,
|
14 |
+
"init_mem_gpu_alloc_delta": 1261906944,
|
15 |
+
"init_mem_gpu_peaked_delta": 0,
|
16 |
+
"total_flos": 3.401354569939134e+19,
|
17 |
+
"train_mem_cpu_alloc_delta": 16811478,
|
18 |
+
"train_mem_cpu_peaked_delta": 230270329,
|
19 |
+
"train_mem_gpu_alloc_delta": 3786449408,
|
20 |
+
"train_mem_gpu_peaked_delta": 6820308992,
|
21 |
+
"train_runtime": 32379.322,
|
22 |
+
"train_samples": 5473,
|
23 |
+
"train_samples_per_second": 0.091
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": true,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.0,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"gradient_checkpointing": true,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.1,
|
50 |
+
"hidden_size": 1024,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 4096,
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.1,
|
55 |
+
"mask_channel_length": 10,
|
56 |
+
"mask_channel_min_space": 1,
|
57 |
+
"mask_channel_other": 0.0,
|
58 |
+
"mask_channel_prob": 0.0,
|
59 |
+
"mask_channel_selection": "static",
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_prob": 0.0,
|
62 |
+
"mask_time_length": 10,
|
63 |
+
"mask_time_min_space": 1,
|
64 |
+
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.05,
|
66 |
+
"mask_time_selection": "static",
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 0,
|
74 |
+
"transformers_version": "4.5.0.dev0",
|
75 |
+
"vocab_size": 37
|
76 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"eval_loss": 0.35807397961616516,
|
4 |
+
"eval_mem_cpu_alloc_delta": 204106932,
|
5 |
+
"eval_mem_cpu_peaked_delta": 25299703,
|
6 |
+
"eval_mem_gpu_alloc_delta": 0,
|
7 |
+
"eval_mem_gpu_peaked_delta": 6155822592,
|
8 |
+
"eval_runtime": 345.8016,
|
9 |
+
"eval_samples": 2509,
|
10 |
+
"eval_samples_per_second": 7.256,
|
11 |
+
"eval_wer": 0.35535428875865743
|
12 |
+
}
|
predictions.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:797b6155a39ac92af7588b2fead1fccce9892a261e97d5ac5c2db9d547031b1d
|
3 |
+
size 1262085527
|
result.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4a7896012604abad91cc051fc09c44ff46c874582eebd44fabc6447b12a83fe
|
3 |
+
size 3183
|
sample1123.flac
ADDED
Binary file (104 kB). View file
|
|
sample910.flac
ADDED
Binary file (45.8 kB). View file
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|"}
|
train_results.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"init_mem_cpu_alloc_delta": 9477734,
|
4 |
+
"init_mem_cpu_peaked_delta": 18306,
|
5 |
+
"init_mem_gpu_alloc_delta": 1261906944,
|
6 |
+
"init_mem_gpu_peaked_delta": 0,
|
7 |
+
"total_flos": 3.401354569939134e+19,
|
8 |
+
"train_mem_cpu_alloc_delta": 16811478,
|
9 |
+
"train_mem_cpu_peaked_delta": 230270329,
|
10 |
+
"train_mem_gpu_alloc_delta": 3786449408,
|
11 |
+
"train_mem_gpu_peaked_delta": 6820308992,
|
12 |
+
"train_runtime": 32379.322,
|
13 |
+
"train_samples": 5473,
|
14 |
+
"train_samples_per_second": 0.091
|
15 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 30.0,
|
5 |
+
"global_step": 2940,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 3.06,
|
12 |
+
"learning_rate": 0.00017999999999999998,
|
13 |
+
"loss": 5.039,
|
14 |
+
"step": 300
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 3.06,
|
18 |
+
"eval_loss": 2.9455764293670654,
|
19 |
+
"eval_runtime": 358.486,
|
20 |
+
"eval_samples_per_second": 6.999,
|
21 |
+
"eval_wer": 1.0,
|
22 |
+
"step": 300
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"epoch": 6.12,
|
26 |
+
"learning_rate": 0.00028770491803278684,
|
27 |
+
"loss": 2.9411,
|
28 |
+
"step": 600
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 6.12,
|
32 |
+
"eval_loss": 2.8372132778167725,
|
33 |
+
"eval_runtime": 362.2267,
|
34 |
+
"eval_samples_per_second": 6.927,
|
35 |
+
"eval_wer": 1.0,
|
36 |
+
"step": 600
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 9.18,
|
40 |
+
"learning_rate": 0.00025081967213114756,
|
41 |
+
"loss": 0.9286,
|
42 |
+
"step": 900
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"epoch": 9.18,
|
46 |
+
"eval_loss": 0.3580135107040405,
|
47 |
+
"eval_runtime": 372.9874,
|
48 |
+
"eval_samples_per_second": 6.727,
|
49 |
+
"eval_wer": 0.514917421417155,
|
50 |
+
"step": 900
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 12.24,
|
54 |
+
"learning_rate": 0.0002139344262295082,
|
55 |
+
"loss": 0.3039,
|
56 |
+
"step": 1200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 12.24,
|
60 |
+
"eval_loss": 0.33028751611709595,
|
61 |
+
"eval_runtime": 377.8898,
|
62 |
+
"eval_samples_per_second": 6.64,
|
63 |
+
"eval_wer": 0.44296084176878,
|
64 |
+
"step": 1200
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 15.31,
|
68 |
+
"learning_rate": 0.00017704918032786883,
|
69 |
+
"loss": 0.2022,
|
70 |
+
"step": 1500
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 15.31,
|
74 |
+
"eval_loss": 0.30936819314956665,
|
75 |
+
"eval_runtime": 374.6431,
|
76 |
+
"eval_samples_per_second": 6.697,
|
77 |
+
"eval_wer": 0.4007059136920618,
|
78 |
+
"step": 1500
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 18.37,
|
82 |
+
"learning_rate": 0.00014016393442622951,
|
83 |
+
"loss": 0.1529,
|
84 |
+
"step": 1800
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 18.37,
|
88 |
+
"eval_loss": 0.3163447976112366,
|
89 |
+
"eval_runtime": 381.4751,
|
90 |
+
"eval_samples_per_second": 6.577,
|
91 |
+
"eval_wer": 0.38395711241342567,
|
92 |
+
"step": 1800
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 21.43,
|
96 |
+
"learning_rate": 0.00010327868852459015,
|
97 |
+
"loss": 0.1165,
|
98 |
+
"step": 2100
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 21.43,
|
102 |
+
"eval_loss": 0.3391939103603363,
|
103 |
+
"eval_runtime": 380.5289,
|
104 |
+
"eval_samples_per_second": 6.593,
|
105 |
+
"eval_wer": 0.3692061800745871,
|
106 |
+
"step": 2100
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 24.49,
|
110 |
+
"learning_rate": 6.639344262295081e-05,
|
111 |
+
"loss": 0.1058,
|
112 |
+
"step": 2400
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 24.49,
|
116 |
+
"eval_loss": 0.35883328318595886,
|
117 |
+
"eval_runtime": 376.435,
|
118 |
+
"eval_samples_per_second": 6.665,
|
119 |
+
"eval_wer": 0.3648774640383591,
|
120 |
+
"step": 2400
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 27.55,
|
124 |
+
"learning_rate": 2.950819672131147e-05,
|
125 |
+
"loss": 0.086,
|
126 |
+
"step": 2700
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"epoch": 27.55,
|
130 |
+
"eval_loss": 0.35711735486984253,
|
131 |
+
"eval_runtime": 376.6441,
|
132 |
+
"eval_samples_per_second": 6.661,
|
133 |
+
"eval_wer": 0.3572522642514651,
|
134 |
+
"step": 2700
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 30.0,
|
138 |
+
"step": 2940,
|
139 |
+
"total_flos": 3.401354569939134e+19,
|
140 |
+
"train_runtime": 32379.322,
|
141 |
+
"train_samples_per_second": 0.091
|
142 |
+
}
|
143 |
+
],
|
144 |
+
"max_steps": 2940,
|
145 |
+
"num_train_epochs": 30,
|
146 |
+
"total_flos": 3.401354569939134e+19,
|
147 |
+
"trial_name": null,
|
148 |
+
"trial_params": null
|
149 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f2d423da1472e41b342fc1cc8bc8b3c4aa0672544957d802085dbaadee8c2de
|
3 |
+
size 2351
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "a": 5, "b": 6, "c": 7, "d": 8, "e": 9, "f": 10, "g": 11, "h": 12, "i": 13, "j": 14, "k": 15, "l": 16, "m": 17, "n": 18, "o": 19, "p": 20, "q": 21, "r": 22, "s": 23, "t": 24, "u": 25, "v": 26, "w": 27, "x": 28, "y": 29, "z": 30, "ä": 31, "õ": 32, "ö": 33, "ü": 34, "š": 35, "ž": 36}
|