lxyuan commited on
Commit
ad2770c
·
1 Parent(s): ef5daad

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -24
README.md CHANGED
@@ -1,36 +1,64 @@
1
-
2
  ---
3
- license: apache-2.0
4
- library_name: span-marker
5
  tags:
6
- - span-marker
7
- - token-classification
8
- - ner
9
- - named-entity-recognition
10
- pipeline_tag: token-classification
11
  ---
12
 
13
- # SpanMarker for Named Entity Recognition
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
- This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) as the underlying encoder.
16
 
17
- ## Usage
18
 
19
- To use this model for inference, first install the `span_marker` library:
 
 
 
 
 
 
 
 
 
 
20
 
21
- ```bash
22
- pip install span_marker
23
- ```
24
 
25
- You can then run inference with this model like so:
 
 
 
 
26
 
27
- ```python
28
- from span_marker import SpanMarkerModel
29
 
30
- # Download from the 🤗 Hub
31
- model = SpanMarkerModel.from_pretrained("span_marker_model_name")
32
- # Run inference
33
- entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
34
- ```
35
 
36
- See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.
 
 
 
 
 
1
  ---
 
 
2
  tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: span-marker-bert-base-multilingual-uncased-multinerd
6
+ results: []
 
7
  ---
8
 
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # span-marker-bert-base-multilingual-uncased-multinerd
13
+
14
+ This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 0.0054
17
+ - Overall Precision: 0.9275
18
+ - Overall Recall: 0.9147
19
+ - Overall F1: 0.9210
20
+ - Overall Accuracy: 0.9842
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
 
34
+ ## Training procedure
35
 
36
+ ### Training hyperparameters
37
 
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 32
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 64
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 3
49
 
50
+ ### Training results
 
 
51
 
52
+ | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
53
+ |:-------------:|:-----:|:------:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|
54
+ | 0.0157 | 1.0 | 50369 | 0.0048 | 0.9143 | 0.8986 | 0.9064 | 0.9807 |
55
+ | 0.003 | 2.0 | 100738 | 0.0047 | 0.9237 | 0.9126 | 0.9181 | 0.9835 |
56
+ | 0.0017 | 3.0 | 151107 | 0.0054 | 0.9275 | 0.9147 | 0.9210 | 0.9842 |
57
 
 
 
58
 
59
+ ### Framework versions
 
 
 
 
60
 
61
+ - Transformers 4.30.2
62
+ - Pytorch 2.0.1+cu117
63
+ - Datasets 2.14.3
64
+ - Tokenizers 0.13.3