--- license: mit pipeline_tag: video-text-to-text ---

Bo Li*1Yuanhan Zhang*,1Liangyu Chen*,1Jinghao Wang*,1Fanyi Pu*,1
Jingkang Yang1Chunyuan Li2Ziwei Liu1
1S-Lab, Nanyang Technological University  2Microsoft Research, Redmond
----------------- ![](https://img.shields.io/badge/otter-v0.2-darkcyan) ![](https://img.shields.io/github/stars/luodian/otter?style=social) [![Hits](https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FLuodian%2Fotter&count_bg=%23FFA500&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=visitors&edge_flat=false)](https://hits.seeyoufarm.com) ![](https://black.readthedocs.io/en/stable/_static/license.svg) ![](https://img.shields.io/badge/code%20style-black-000000.svg) An example of using this model to run on your video. Please first clone [Otter](https://github.com/Luodian/Otter) to your local disk. Place following script inside the `Otter` folder to make sure it has the access to `otter/modeling_otter.py`. ```python import mimetypes import os from typing import Union import cv2 import requests import torch import transformers from PIL import Image import sys # make sure you can properly access the otter folder from otter.modeling_otter import OtterForConditionalGeneration # Disable warnings requests.packages.urllib3.disable_warnings() # ------------------- Utility Functions ------------------- def get_content_type(file_path): content_type, _ = mimetypes.guess_type(file_path) return content_type # ------------------- Image and Video Handling Functions ------------------- def extract_frames(video_path, num_frames=16): video = cv2.VideoCapture(video_path) total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) frame_step = total_frames // num_frames frames = [] for i in range(num_frames): video.set(cv2.CAP_PROP_POS_FRAMES, i * frame_step) ret, frame = video.read() if ret: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = Image.fromarray(frame).convert("RGB") frames.append(frame) video.release() return frames def get_image(url: str) -> Union[Image.Image, list]: if "://" not in url: # Local file content_type = get_content_type(url) else: # Remote URL content_type = requests.head(url, stream=True, verify=False).headers.get("Content-Type") if "image" in content_type: if "://" not in url: # Local file return Image.open(url) else: # Remote URL return Image.open(requests.get(url, stream=True, verify=False).raw) elif "video" in content_type: video_path = "temp_video.mp4" if "://" not in url: # Local file video_path = url else: # Remote URL with open(video_path, "wb") as f: f.write(requests.get(url, stream=True, verify=False).content) frames = extract_frames(video_path) if "://" in url: # Only remove the temporary video file if it was downloaded os.remove(video_path) return frames else: raise ValueError("Invalid content type. Expected image or video.") # ------------------- OTTER Prompt and Response Functions ------------------- def get_formatted_prompt(prompt: str) -> str: return f"User: {prompt} GPT:" def get_response(input_data, prompt: str, model=None, image_processor=None, tensor_dtype=None) -> str: if isinstance(input_data, Image.Image): vision_x = image_processor.preprocess([input_data], return_tensors="pt")["pixel_values"].unsqueeze(1).unsqueeze(0) elif isinstance(input_data, list): # list of video frames vision_x = image_processor.preprocess(input_data, return_tensors="pt")["pixel_values"].unsqueeze(0).unsqueeze(0) else: raise ValueError("Invalid input data. Expected PIL Image or list of video frames.") lang_x = model.text_tokenizer( [ get_formatted_prompt(prompt), ], return_tensors="pt", ) bad_words_id = model.text_tokenizer(["User:", "GPT1:", "GFT:", "GPT:"], add_special_tokens=False).input_ids generated_text = model.generate( vision_x=vision_x.to(model.device, dtype=tensor_dtype), lang_x=lang_x["input_ids"].to(model.device), attention_mask=lang_x["attention_mask"].to(model.device), max_new_tokens=512, num_beams=3, no_repeat_ngram_size=3, bad_words_ids=bad_words_id, ) parsed_output = ( model.text_tokenizer.decode(generated_text[0]) .split("")[-1] .lstrip() .rstrip() .split("<|endofchunk|>")[0] .lstrip() .rstrip() .lstrip('"') .rstrip('"') ) return parsed_output # ------------------- Main Function ------------------- load_bit = "fp32" if load_bit == "fp16": precision = {"torch_dtype": torch.float16} elif load_bit == "bf16": precision = {"torch_dtype": torch.bfloat16} elif load_bit == "fp32": precision = {"torch_dtype": torch.float32} # This model version is trained on MIMIC-IT DC dataset. model = OtterForConditionalGeneration.from_pretrained("luodian/OTTER-9B-DenseCaption", device_map="auto", **precision) tensor_dtype = {"fp16": torch.float16, "bf16": torch.bfloat16, "fp32": torch.float32}[load_bit] model.text_tokenizer.padding_side = "left" tokenizer = model.text_tokenizer image_processor = transformers.CLIPImageProcessor() model.eval() while True: video_url = input("Enter video path: ") # Replace with the path to your video file, could be any common format. frames_list = get_image(video_url) while True: prompts_input = input("Enter prompts: ") if prompts_input.lower() == "quit": break print(f"\nPrompt: {prompts_input}") response = get_response(frames_list, prompts_input, model, image_processor, tensor_dtype) print(f"Response: {response}") ```
## 📜 Citation ``` @article{li2023otter, title={Otter: A Multi-Modal Model with In-Context Instruction Tuning}, author={Li, Bo and Zhang, Yuanhan and Chen, Liangyu and Wang, Jinghao and Yang, Jingkang and Liu, Ziwei}, journal={arXiv preprint arXiv:2305.03726}, year={2023} } ```