File size: 7,363 Bytes
ffac82b
 
6994c86
ffac82b
42a8ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f77a3be
 
 
42a8ed8
 
 
 
 
 
 
 
 
 
229e9ea
20cefde
362b449
42a8ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f77a3be
42a8ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f77a3be
42a8ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f77a3be
42a8ed8
f77a3be
42a8ed8
f77a3be
42a8ed8
f77a3be
42a8ed8
 
 
 
 
 
 
 
20cefde
42a8ed8
f77a3be
42a8ed8
 
 
 
 
20cefde
42a8ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
20cefde
f77a3be
362b449
f77a3be
 
 
 
 
 
2079d37
f77a3be
 
 
2079d37
f77a3be
 
 
 
2079d37
f77a3be
362b449
2079d37
f77a3be
2079d37
362b449
 
2079d37
362b449
 
2079d37
362b449
 
 
20cefde
6994c86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a8ed8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
license: mit
pipeline_tag: video-text-to-text
---

<p align="center" width="100%">
<img src="https://i.postimg.cc/MKmyP9wH/new-banner.png"  width="80%" height="80%">
</p>


<div>
<div align="center">
    <a href='https://brianboli.com/' target='_blank'>Bo Li*<sup>1</sup></a>&emsp;
    <a href='https://zhangyuanhan-ai.github.io/' target='_blank'>Yuanhan Zhang*<sup>,1</sup></a>&emsp;
    <a href='https://cliangyu.com/' target='_blank'>Liangyu Chen*<sup>,1</sup></a>&emsp;
    <a href='https://king159.github.io/' target='_blank'>Jinghao Wang*<sup>,1</sup></a>&emsp;
    <a href='https://pufanyi.github.io/' target='_blank'>Fanyi Pu*<sup>,1</sup></a>&emsp;
    </br>
    <a href='https://jingkang50.github.io/' target='_blank'>Jingkang Yang<sup>1</sup></a>&emsp;
    <a href='https://chunyuan.li/' target='_blank'>Chunyuan Li<sup>2</sup></a>&emsp;
    <a href='https://liuziwei7.github.io/' target='_blank'>Ziwei Liu<sup>1</sup></a>
</div>
<div>
<div align="center">
    <sup>1</sup>S-Lab, Nanyang Technological University&emsp;
    <sup>2</sup>Microsoft Research, Redmond
</div>
 
 -----------------

![](https://img.shields.io/badge/otter-v0.2-darkcyan)
![](https://img.shields.io/github/stars/luodian/otter?style=social)
[![Hits](https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FLuodian%2Fotter&count_bg=%23FFA500&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=visitors&edge_flat=false)](https://hits.seeyoufarm.com)
![](https://black.readthedocs.io/en/stable/_static/license.svg)
![](https://img.shields.io/badge/code%20style-black-000000.svg)

An example of using this model to run on your video. 
Please first clone [Otter](https://github.com/Luodian/Otter) to your local disk. 
Place following script inside the `Otter` folder to make sure it has the access to `otter/modeling_otter.py`.

```python
import mimetypes
import os
from typing import Union
import cv2
import requests
import torch
import transformers
from PIL import Image
import sys

# make sure you can properly access the otter folder
from otter.modeling_otter import OtterForConditionalGeneration

# Disable warnings
requests.packages.urllib3.disable_warnings()

# ------------------- Utility Functions -------------------


def get_content_type(file_path):
    content_type, _ = mimetypes.guess_type(file_path)
    return content_type


# ------------------- Image and Video Handling Functions -------------------


def extract_frames(video_path, num_frames=16):
    video = cv2.VideoCapture(video_path)
    total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_step = total_frames // num_frames
    frames = []

    for i in range(num_frames):
        video.set(cv2.CAP_PROP_POS_FRAMES, i * frame_step)
        ret, frame = video.read()
        if ret:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frame = Image.fromarray(frame).convert("RGB")
            frames.append(frame)

    video.release()
    return frames


def get_image(url: str) -> Union[Image.Image, list]:
    if "://" not in url:  # Local file
        content_type = get_content_type(url)
    else:  # Remote URL
        content_type = requests.head(url, stream=True, verify=False).headers.get("Content-Type")

    if "image" in content_type:
        if "://" not in url:  # Local file
            return Image.open(url)
        else:  # Remote URL
            return Image.open(requests.get(url, stream=True, verify=False).raw)
    elif "video" in content_type:
        video_path = "temp_video.mp4"
        if "://" not in url:  # Local file
            video_path = url
        else:  # Remote URL
            with open(video_path, "wb") as f:
                f.write(requests.get(url, stream=True, verify=False).content)
        frames = extract_frames(video_path)
        if "://" in url:  # Only remove the temporary video file if it was downloaded
            os.remove(video_path)
        return frames
    else:
        raise ValueError("Invalid content type. Expected image or video.")


# ------------------- OTTER Prompt and Response Functions -------------------


def get_formatted_prompt(prompt: str) -> str:
    return f"<image>User: {prompt} GPT:<answer>"


def get_response(input_data, prompt: str, model=None, image_processor=None, tensor_dtype=None) -> str:
    if isinstance(input_data, Image.Image):
        vision_x = image_processor.preprocess([input_data], return_tensors="pt")["pixel_values"].unsqueeze(1).unsqueeze(0)
    elif isinstance(input_data, list):  # list of video frames
        vision_x = image_processor.preprocess(input_data, return_tensors="pt")["pixel_values"].unsqueeze(0).unsqueeze(0)
    else:
        raise ValueError("Invalid input data. Expected PIL Image or list of video frames.")

    lang_x = model.text_tokenizer(
        [
            get_formatted_prompt(prompt),
        ],
        return_tensors="pt",
    )

    bad_words_id = model.text_tokenizer(["User:", "GPT1:", "GFT:", "GPT:"], add_special_tokens=False).input_ids
    generated_text = model.generate(
        vision_x=vision_x.to(model.device, dtype=tensor_dtype),
        lang_x=lang_x["input_ids"].to(model.device),
        attention_mask=lang_x["attention_mask"].to(model.device),
        max_new_tokens=512,
        num_beams=3,
        no_repeat_ngram_size=3,
        bad_words_ids=bad_words_id,
    )
    parsed_output = (
        model.text_tokenizer.decode(generated_text[0])
        .split("<answer>")[-1]
        .lstrip()
        .rstrip()
        .split("<|endofchunk|>")[0]
        .lstrip()
        .rstrip()
        .lstrip('"')
        .rstrip('"')
    )
    return parsed_output


# ------------------- Main Function -------------------
load_bit = "fp32"
if load_bit == "fp16":
    precision = {"torch_dtype": torch.float16}
elif load_bit == "bf16":
    precision = {"torch_dtype": torch.bfloat16}
elif load_bit == "fp32":
    precision = {"torch_dtype": torch.float32}

# This model version is trained on MIMIC-IT DC dataset.
model = OtterForConditionalGeneration.from_pretrained("luodian/OTTER-9B-DenseCaption", device_map="auto", **precision)
tensor_dtype = {"fp16": torch.float16, "bf16": torch.bfloat16, "fp32": torch.float32}[load_bit]

model.text_tokenizer.padding_side = "left"
tokenizer = model.text_tokenizer
image_processor = transformers.CLIPImageProcessor()
model.eval()

while True:
    video_url = input("Enter video path: ")  # Replace with the path to your video file, could be any common format.

    frames_list = get_image(video_url)

    while True:
        prompts_input = input("Enter prompts: ")

        if prompts_input.lower() == "quit":
            break

        print(f"\nPrompt: {prompts_input}")
        response = get_response(frames_list, prompts_input, model, image_processor, tensor_dtype)
        print(f"Response: {response}")

```
<br>
<div align="center">
    <a href='https://arxiv.org/abs/2305.03726'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> <a href='https://github.com/Luodian/Otter'><img src='https://img.shields.io/badge/GitHub-Code-blue'></a>
</div>
    
## 📜 Citation

```
@article{li2023otter,
  title={Otter: A Multi-Modal Model with In-Context Instruction Tuning},
  author={Li, Bo and Zhang, Yuanhan and Chen, Liangyu and Wang, Jinghao and Yang, Jingkang and Liu, Ziwei},
  journal={arXiv preprint arXiv:2305.03726},
  year={2023}
}
```