File size: 5,271 Bytes
6a65d17
b3113ac
 
6a65d17
 
b3113ac
6a65d17
0741dd7
 
c7bc7d9
6a65d17
c7bc7d9
f587699
6a65d17
c7bc7d9
 
0741dd7
c7bc7d9
f587699
c7bc7d9
 
 
 
 
f587699
0741dd7
f587699
 
0741dd7
f587699
 
0741dd7
f587699
 
0741dd7
f587699
6a65d17
 
c7bc7d9
6a65d17
b3113ac
c8acc40
b3113ac
 
 
6a65d17
 
 
c7bc7d9
 
 
ac84ada
6a65d17
c8acc40
 
6a65d17
 
c7bc7d9
 
 
 
 
6a65d17
 
 
e7b488d
b88e18b
c8acc40
b88e18b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a65d17
 
 
 
b88e18b
6a65d17
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
language:
- uz
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: XLS-R-300M Uzbek CV8
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: uz
    metrics:
    - type: wer
      value: 15.065
      name: Test WER (with LM)
    - type: cer
      value: 3.077
      name: Test CER (with LM)
    - type: wer
      value: 32.88
      name: Test WER (no LM)
    - type: cer
      value: 6.53
      name: Test CER (no LM)
---

# XLS-R-300M Uzbek CV8

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UZ dataset.
It achieves the following results on the validation set:
- Loss: 0.3063
- Wer: 0.3852
- Cer: 0.0777

## Model description

For a description of the model architecture, see [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m)

The model vocabulary consists of the [Modern Latin alphabet for Uzbek](https://en.wikipedia.org/wiki/Uzbek_alphabet), with punctuation removed. 
Note that the characters <‘> and <’> do not count as punctuation, as <‘> modifies \<o\> and \<g\>, and <’> indicates the glottal stop or a long vowel.

The decoder uses a kenlm language model built on common_voice text.

## Intended uses & limitations

This model is expected to be of some utility for low-fidelity use cases such as:
- Draft video captions
- Indexing of recorded broadcasts

The model is not reliable enough to use as a substitute for live captions for accessibility purposes, and it should not be used in a manner that would infringe the privacy of any of the contributors to the Common Voice dataset nor any other speakers.

## Training and evaluation data

The 50% of the `train` common voice official split was used as training data. The 50% of the official `dev` split was used as validation data, and the full `test` set was used for final evaluation of the model without LM, while the model with LM was evaluated only on 500 examples from the `test` set.

The kenlm language model was compiled from the target sentences of the train + other dataset splits.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 3.1401        | 3.25  | 500   | 3.1146          | 1.0    | 1.0    |
| 2.7484        | 6.49  | 1000  | 2.2842          | 1.0065 | 0.7069 |
| 1.0899        | 9.74  | 1500  | 0.5414          | 0.6125 | 0.1351 |
| 0.9465        | 12.99 | 2000  | 0.4566          | 0.5635 | 0.1223 |
| 0.8771        | 16.23 | 2500  | 0.4212          | 0.5366 | 0.1161 |
| 0.8346        | 19.48 | 3000  | 0.3994          | 0.5144 | 0.1102 |
| 0.8127        | 22.73 | 3500  | 0.3819          | 0.4944 | 0.1051 |
| 0.7833        | 25.97 | 4000  | 0.3705          | 0.4798 | 0.1011 |
| 0.7603        | 29.22 | 4500  | 0.3661          | 0.4704 | 0.0992 |
| 0.7424        | 32.47 | 5000  | 0.3529          | 0.4577 | 0.0957 |
| 0.7251        | 35.71 | 5500  | 0.3410          | 0.4473 | 0.0928 |
| 0.7106        | 38.96 | 6000  | 0.3401          | 0.4428 | 0.0919 |
| 0.7027        | 42.21 | 6500  | 0.3355          | 0.4353 | 0.0905 |
| 0.6927        | 45.45 | 7000  | 0.3308          | 0.4296 | 0.0885 |
| 0.6828        | 48.7  | 7500  | 0.3246          | 0.4204 | 0.0863 |
| 0.6706        | 51.95 | 8000  | 0.3250          | 0.4233 | 0.0868 |
| 0.6629        | 55.19 | 8500  | 0.3264          | 0.4159 | 0.0849 |
| 0.6556        | 58.44 | 9000  | 0.3213          | 0.4100 | 0.0835 |
| 0.6484        | 61.69 | 9500  | 0.3182          | 0.4124 | 0.0837 |
| 0.6407        | 64.93 | 10000 | 0.3171          | 0.4050 | 0.0825 |
| 0.6375        | 68.18 | 10500 | 0.3150          | 0.4039 | 0.0822 |
| 0.6363        | 71.43 | 11000 | 0.3129          | 0.3991 | 0.0810 |
| 0.6307        | 74.67 | 11500 | 0.3114          | 0.3986 | 0.0807 |
| 0.6232        | 77.92 | 12000 | 0.3103          | 0.3895 | 0.0790 |
| 0.6216        | 81.17 | 12500 | 0.3086          | 0.3891 | 0.0790 |
| 0.6174        | 84.41 | 13000 | 0.3082          | 0.3881 | 0.0785 |
| 0.6196        | 87.66 | 13500 | 0.3059          | 0.3875 | 0.0782 |
| 0.6174        | 90.91 | 14000 | 0.3084          | 0.3862 | 0.0780 |
| 0.6169        | 94.16 | 14500 | 0.3070          | 0.3860 | 0.0779 |
| 0.6166        | 97.4  | 15000 | 0.3066          | 0.3855 | 0.0778 |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0