File size: 24,964 Bytes
d6ef998 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:134975
- loss:CoSENTLoss
- dataset_size:134934
base_model: thenlper/gte-base
datasets: []
widget:
- source_sentence: 9 postcolonial studies The Human in the Anthropocene If the problem
of global warming or climate change had not burst in on us through the 2007 Report
of the Intergovernmental Panel on Climate Change (IPCC), globalization would have
been perhaps the most important theme stoking our thoughts about being human.
sentences:
- 'Baltimore, MD: Johns Hopkins University Press, 1993.'
- Publisher contact information may be obtained at http://www.jstor.org/journals/sage.html.
- "He Decolonizing the Cosmopolitan Geospatial Imaginary of the Anthropocene Pivot\
\ 7.1 159 suggests that in discussion of the anthropogenic climate change and\
\ global warming, one has to think of these things simultaneously: â\x80\x9Cthe\
\ human-human and the nonhuman-humanâ\x80\x9D (11)."
- source_sentence: "1-18 (Article) Published by The Johns Hopkins University Press\
\ DOI: 10.1353/nlh.2012.0007 For additional information about this article Access\
\ provided by Australian National University (2 May 2013 23:47 GMT) http://muse.jhu.edu/journals/nlh/summary/v043/43.1.chakrabarty.html\
\ New Literary History, 2012, 43: 1â\x80\x9318 Postcolonial Studies and the Challenge\
\ of Climate Change Dipesh Chakrabarty For Homi K. Bhabha H owever we come to\
\ the question of postcolonial studies at this historical juncture, there are\
\ two phenomena, both topics of public debate since the early 1990s, that none\
\ of us can quite escape in our personal and collective lives at present: globalization\
\ and global warming."
sentences:
- What marks the rise of the Anthropocene proper is the fact that current geological
transformations are dominated by human action.
- Postcolonial studies and the challenge of climate change.
- How do we think of this collective human agency in the era of the Anthropocene?
- source_sentence: "Chakrabarty thus appeals for â\x80\x98non-ontological ways of\
\ thinking the humanâ\x80\x99 (2012: 13) to bring about this needed interpretive\
\ stretching."
sentences:
- "Arendt, H, (1998) The human condition, Chicago: The University of Chicago Arias-Ââ\x80\
\x90Maldonado, M. (2015) â\x80\x98Spelling the end of nature?"
- "â\x80\x9CPostcolonial Studies and the Challenge of Climate Change.â\x80\x9D New\
\ Literary History 43.1 (2012): 1â\x80\x9318."
- We need nonontological ways of thinking the human.
- source_sentence: "23 Chakrabarty, â\x80\x9CPostcolonial Studiesâ\x80\x9D, 11; italics\
\ in original."
sentences:
- Chakrabarty, D. Postcolonial Studies and the Challenge of Climate Change.
- "In this article, we adopt the term Anthropocene precisely to refer to these processes\
\ and phenomena, and to the associated urgency of ï¬\x81nding new ways to inhabit\
\ this present-day (and future) epoch in which we perceive Earth no longer as\
\ the framework for human action, but precisely as participating in (and increasingly\
\ partaking in the conï¬\x81guring of) that action [23] (p. 42)."
- Postcolonial Studies and the Challenge of Climate Change Dipesh Chakrabarty New
Literary History, Volume 43, Number 1, Winter 2012, pp.
- source_sentence: And then comes the figure of the human in the age of the Anthropocene,
the era when humans act as a geological force on the planet, changing its climate
for millennia to come.
sentences:
- "â\x80\x98Anthropoceneâ\x80\x99 means, after all, â\x80\x98new Man time.â\x80\x99\
\ For, while the Anthropocene, as a name, claims a generalised human agency responsible\
\ for the myriad ecological crises gathered under its auspice, it is simply not\
\ the case that, as Ghosh argues, â\x80\x9Cevery human being, past and present,\
\ has contributed to the present cycle of climate changeâ\x80\x9D (2016, 115)."
- 'Minneapolis: University of Minnesota Press, 2007.'
- 'Baltimore, MD: Johns Hopkins University Press, 1993.'
pipeline_tag: sentence-similarity
---
# SentenceTransformer based on thenlper/gte-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-base](https://huggingface.co/thenlper/gte-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [thenlper/gte-base](https://huggingface.co/thenlper/gte-base) <!-- at revision 5e95d41db6721e7cbd5006e99c7508f0083223d6 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'And then comes the figure of the human in the age of the Anthropocene, the era when humans act as a geological force on the planet, changing its climate for millennia to come.',
'â\x80\x98Anthropoceneâ\x80\x99 means, after all, â\x80\x98new Man time.â\x80\x99 For, while the Anthropocene, as a name, claims a generalised human agency responsible for the myriad ecological crises gathered under its auspice, it is simply not the case that, as Ghosh argues, â\x80\x9cevery human being, past and present, has contributed to the present cycle of climate changeâ\x80\x9d (2016, 115).',
'Minneapolis: University of Minnesota Press, 2007.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 134,934 training samples
* Columns: <code>inp1</code>, <code>inp2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | inp1 | inp2 | score |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 8 tokens</li><li>mean: 38.09 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 32.43 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: -1.0</li><li>mean: -0.8</li><li>max: 1.0</li></ul> |
* Samples:
| inp1 | inp2 | score |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>Following the lead of John Guillory in Cultural Capital: The Problem of Literary Canon Formation, I would argue that such theoretical arguments characteristically concern an âimaginary canonââimaginary in that there is no speciï¬cally deï¬ned body of works or authors that make up such a canon.</code> | <code>âBrooksâs theory,â guillory writes in Cultural Capital: The Problem of Liter- ary Canon Formation (Chicago: Univ.</code> | <code>1.0</code> |
| <code>Cultural Capital: The Problem of Literary Canon Formation.</code> | <code>âBrooksâs theory,â guillory writes in Cultural Capital: The Problem of Liter- ary Canon Formation (Chicago: Univ.</code> | <code>1.0</code> |
| <code>A partic- ularly good example of the complex operations of critical attention and peda- gogical appropriation occurs with Zora Neale Hurstonâs Their Eyes Were Watching God.</code> | <code>Similarly, in her article comparing the image patterns in Zora Neale Hurstonâs Their Eyes Were Watching God and Beloved, Glenda B. Weathers also observes the dichotomous function of the trees in Beloved and argues, âThey posit knowledge of both good and evilâ (2005, 201) for black Americans seek- ing freedom from slavery and oppression.</code> | <code>1.0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0119 | 100 | 2.2069 |
| 0.0237 | 200 | 2.3883 |
| 0.0119 | 100 | 1.8358 |
| 0.0237 | 200 | 1.974 |
| 0.0356 | 300 | 1.8488 |
| 0.0474 | 400 | 1.8799 |
| 0.0593 | 500 | 2.0132 |
| 0.0711 | 600 | 1.8831 |
| 0.0830 | 700 | 1.601 |
| 0.0948 | 800 | 2.0316 |
| 0.1067 | 900 | 1.9483 |
| 0.1185 | 1000 | 1.6585 |
| 0.1304 | 1100 | 1.7986 |
| 0.1422 | 1200 | 1.4978 |
| 0.1541 | 1300 | 1.6035 |
| 0.1660 | 1400 | 1.9908 |
| 0.1778 | 1500 | 1.2896 |
| 0.1897 | 1600 | 1.97 |
| 0.2015 | 1700 | 1.9622 |
| 0.2134 | 1800 | 1.4706 |
| 0.2252 | 1900 | 1.5162 |
| 0.2371 | 2000 | 1.6988 |
| 0.2489 | 2100 | 1.6552 |
| 0.2608 | 2200 | 1.7779 |
| 0.2726 | 2300 | 1.9001 |
| 0.2845 | 2400 | 1.7802 |
| 0.2963 | 2500 | 1.6582 |
| 0.3082 | 2600 | 1.377 |
| 0.3201 | 2700 | 1.473 |
| 0.3319 | 2800 | 1.441 |
| 0.3438 | 2900 | 1.8727 |
| 0.3556 | 3000 | 1.1545 |
| 0.3675 | 3100 | 1.7319 |
| 0.3793 | 3200 | 1.9862 |
| 0.3912 | 3300 | 1.467 |
| 0.4030 | 3400 | 2.125 |
| 0.4149 | 3500 | 2.0474 |
| 0.4267 | 3600 | 1.7078 |
| 0.4386 | 3700 | 1.7791 |
| 0.4505 | 3800 | 1.6368 |
| 0.4623 | 3900 | 1.4451 |
| 0.4742 | 4000 | 1.5612 |
| 0.4860 | 4100 | 1.3163 |
| 0.4979 | 4200 | 1.5675 |
| 0.5097 | 4300 | 1.2766 |
| 0.5216 | 4400 | 1.4506 |
| 0.5334 | 4500 | 0.9601 |
| 0.5453 | 4600 | 1.4118 |
| 0.5571 | 4700 | 1.3951 |
| 0.5690 | 4800 | 1.2048 |
| 0.5808 | 4900 | 1.1108 |
| 0.5927 | 5000 | 1.5696 |
| 0.6046 | 5100 | 1.4223 |
| 0.6164 | 5200 | 1.1789 |
| 0.6283 | 5300 | 1.1573 |
| 0.6401 | 5400 | 1.4457 |
| 0.6520 | 5500 | 1.6622 |
| 0.6638 | 5600 | 1.2699 |
| 0.6757 | 5700 | 1.0191 |
| 0.6875 | 5800 | 1.2764 |
| 0.6994 | 5900 | 0.8999 |
| 0.6046 | 5100 | 1.5085 |
| 0.6164 | 5200 | 1.3738 |
| 0.6283 | 5300 | 1.0537 |
| 0.6401 | 5400 | 1.3578 |
| 0.6520 | 5500 | 1.6301 |
| 0.6638 | 5600 | 1.091 |
| 0.6757 | 5700 | 0.9261 |
| 0.6875 | 5800 | 1.1276 |
| 0.6994 | 5900 | 0.7678 |
| 0.6047 | 5100 | 1.2021 |
| 0.6166 | 5200 | 0.8787 |
| 0.6284 | 5300 | 0.6169 |
| 0.6403 | 5400 | 0.9881 |
| 0.6521 | 5500 | 1.1844 |
| 0.6640 | 5600 | 1.032 |
| 0.6758 | 5700 | 0.8486 |
| 0.6877 | 5800 | 1.4845 |
| 0.6995 | 5900 | 1.4 |
| 0.7114 | 6000 | 0.9685 |
| 0.7233 | 6100 | 0.9288 |
| 0.7351 | 6200 | 1.4682 |
| 0.7470 | 6300 | 0.6551 |
| 0.7588 | 6400 | 0.5513 |
| 0.7707 | 6500 | 0.6092 |
| 0.7825 | 6600 | 1.3235 |
| 0.7944 | 6700 | 0.4917 |
| 0.8063 | 6800 | 0.8944 |
| 0.8181 | 6900 | 0.9298 |
| 0.8300 | 7000 | 1.1134 |
| 0.8418 | 7100 | 0.8254 |
| 0.8537 | 7200 | 1.3363 |
| 0.8655 | 7300 | 0.6571 |
| 0.8774 | 7400 | 0.8209 |
| 0.8893 | 7500 | 0.6508 |
| 0.9011 | 7600 | 1.1972 |
| 0.9130 | 7700 | 1.1095 |
| 0.9248 | 7800 | 0.8772 |
| 0.9367 | 7900 | 1.0623 |
| 0.9485 | 8000 | 0.6073 |
| 0.9604 | 8100 | 0.8292 |
| 0.9723 | 8200 | 0.6765 |
| 0.9841 | 8300 | 0.5103 |
| 0.9960 | 8400 | 1.0618 |
| 1.0078 | 8500 | 0.5134 |
| 1.0197 | 8600 | 0.5203 |
| 1.0315 | 8700 | 0.6634 |
| 1.0434 | 8800 | 0.6644 |
| 1.0553 | 8900 | 0.7459 |
| 1.0671 | 9000 | 0.5969 |
| 1.0790 | 9100 | 0.5473 |
| 1.0908 | 9200 | 0.5495 |
| 1.1027 | 9300 | 0.5093 |
| 1.1145 | 9400 | 0.7049 |
| 1.1264 | 9500 | 0.726 |
| 1.1382 | 9600 | 0.6512 |
| 1.1501 | 9700 | 0.5121 |
| 1.1620 | 9800 | 0.5977 |
| 1.1738 | 9900 | 0.4933 |
| 1.1857 | 10000 | 0.8585 |
| 1.1975 | 10100 | 0.2955 |
| 1.2094 | 10200 | 0.6972 |
| 1.2212 | 10300 | 0.454 |
| 1.2331 | 10400 | 1.1057 |
| 1.2450 | 10500 | 0.9724 |
| 1.2568 | 10600 | 0.3057 |
| 1.2687 | 10700 | 0.5967 |
| 1.2805 | 10800 | 0.7332 |
| 1.2924 | 10900 | 0.5382 |
| 1.3042 | 11000 | 0.625 |
| 1.3161 | 11100 | 0.5354 |
| 1.3280 | 11200 | 0.4289 |
| 1.3398 | 11300 | 0.4243 |
| 1.3517 | 11400 | 0.6902 |
| 1.3635 | 11500 | 0.4248 |
| 1.3754 | 11600 | 0.3743 |
| 1.3872 | 11700 | 0.5463 |
| 1.3991 | 11800 | 0.8413 |
| 1.4110 | 11900 | 0.4748 |
| 1.4228 | 12000 | 0.56 |
| 1.4347 | 12100 | 0.9269 |
| 1.4465 | 12200 | 0.4668 |
| 1.4584 | 12300 | 0.4842 |
| 1.4702 | 12400 | 0.5172 |
| 1.4821 | 12500 | 0.4498 |
| 1.4940 | 12600 | 0.4695 |
| 1.5058 | 12700 | 0.2144 |
| 1.5177 | 12800 | 0.8002 |
| 1.5295 | 12900 | 0.4022 |
| 1.5414 | 13000 | 0.4491 |
| 1.5532 | 13100 | 0.4798 |
| 1.5651 | 13200 | 0.7489 |
| 1.5770 | 13300 | 0.6108 |
| 1.5888 | 13400 | 0.3806 |
| 1.6007 | 13500 | 0.4164 |
| 1.6125 | 13600 | 0.6362 |
| 1.6244 | 13700 | 0.4773 |
| 1.6362 | 13800 | 0.4875 |
| 1.6481 | 13900 | 0.5577 |
| 1.6599 | 14000 | 0.3318 |
| 1.6718 | 14100 | 0.2959 |
| 1.6837 | 14200 | 0.3168 |
| 1.6955 | 14300 | 0.403 |
| 1.7074 | 14400 | 0.6553 |
| 1.7192 | 14500 | 0.5814 |
| 1.7311 | 14600 | 0.3407 |
| 1.7429 | 14700 | 0.3985 |
| 1.7548 | 14800 | 0.406 |
| 1.7667 | 14900 | 0.5986 |
| 1.7785 | 15000 | 0.7694 |
| 1.7904 | 15100 | 0.5025 |
| 1.8022 | 15200 | 0.7199 |
| 1.8141 | 15300 | 0.4215 |
| 1.8259 | 15400 | 0.5484 |
| 1.8378 | 15500 | 0.3551 |
| 1.8497 | 15600 | 0.3572 |
| 1.8615 | 15700 | 0.3536 |
| 1.8734 | 15800 | 0.5116 |
| 1.8852 | 15900 | 0.7094 |
| 1.8971 | 16000 | 0.4402 |
| 1.9089 | 16100 | 0.4095 |
| 1.9208 | 16200 | 0.2173 |
| 1.9327 | 16300 | 0.6058 |
| 1.9445 | 16400 | 0.7796 |
| 1.9564 | 16500 | 0.5642 |
| 1.9682 | 16600 | 0.3085 |
| 1.9801 | 16700 | 0.4308 |
| 1.9919 | 16800 | 0.3712 |
</details>
### Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.2.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |