File size: 24,964 Bytes
d6ef998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
---

language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:134975
- loss:CoSENTLoss
- dataset_size:134934
base_model: thenlper/gte-base
datasets: []
widget:
- source_sentence: 9 postcolonial studies The Human in the Anthropocene If the problem
    of global warming or climate change had not burst in on us through the 2007 Report
    of the Intergovernmental Panel on Climate Change (IPCC), globalization would have
    been perhaps the most important theme stoking our thoughts about being human.
  sentences:
  - 'Baltimore, MD: Johns Hopkins University Press, 1993.'
  - Publisher contact information may be obtained at http://www.jstor.org/journals/sage.html.
  - "He Decolonizing the Cosmopolitan Geospatial Imaginary of the Anthropocene Pivot\

    \ 7.1 159 suggests that in discussion of the anthropogenic climate change and\

    \ global warming, one has to think of these things simultaneously: â\x80\x9Cthe\

    \ human-human and the nonhuman-humanâ\x80\x9D (11)."
- source_sentence: "1-18 (Article) Published by The Johns Hopkins University Press\

    \ DOI: 10.1353/nlh.2012.0007 For additional information about this article Access\

    \ provided by Australian National University (2 May 2013 23:47 GMT) http://muse.jhu.edu/journals/nlh/summary/v043/43.1.chakrabarty.html\

    \ New Literary History, 2012, 43: 1â\x80\x9318 Postcolonial Studies and the Challenge\

    \ of Climate Change Dipesh Chakrabarty For Homi K. Bhabha H owever we come to\

    \ the question of postcolonial studies at this historical juncture, there are\

    \ two phenomena, both topics of public debate since the early 1990s, that none\

    \ of us can quite escape in our personal and collective lives at present: globalization\

    \ and global warming."
  sentences:
  - What marks the rise of the Anthropocene proper is the fact that current geological
    transformations are dominated by human action.
  - Postcolonial studies and the challenge of climate change.
  - How do we think of this collective human agency in the era of the Anthropocene?
- source_sentence: "Chakrabarty thus appeals for â\x80\x98non-ontological ways of\

    \ thinking the humanâ\x80\x99 (2012: 13) to bring about this needed interpretive\

    \ stretching."
  sentences:
  - "Arendt, H, (1998) The human condition, Chicago: The University of Chicago Arias-­â\x80\

    \x90Maldonado, M. (2015) â\x80\x98Spelling the end of nature?"
  - "â\x80\x9CPostcolonial Studies and the Challenge of Climate Change.â\x80\x9D New\

    \ Literary History 43.1 (2012): 1â\x80\x9318."
  - We need nonontological ways of thinking the human.
- source_sentence: "23 Chakrabarty, â\x80\x9CPostcolonial Studiesâ\x80\x9D, 11; italics\

    \ in original."
  sentences:
  - Chakrabarty, D. Postcolonial Studies and the Challenge of Climate Change.
  - "In this article, we adopt the term Anthropocene precisely to refer to these processes\

    \ and phenomena, and to the associated urgency of ï¬\x81nding new ways to inhabit\

    \ this present-day (and future) epoch in which we perceive Earth no longer as\

    \ the framework for human action, but precisely as participating in (and increasingly\

    \ partaking in the conï¬\x81guring of) that action [23] (p. 42)."
  - Postcolonial Studies and the Challenge of Climate Change Dipesh Chakrabarty New
    Literary History, Volume 43, Number 1, Winter 2012, pp.
- source_sentence: And then comes the figure of the human in the age of the Anthropocene,
    the era when humans act as a geological force on the planet, changing its climate
    for millennia to come.
  sentences:
  - "â\x80\x98Anthropoceneâ\x80\x99 means, after all, â\x80\x98new Man time.â\x80\x99\

    \ For, while the Anthropocene, as a name, claims a generalised human agency responsible\

    \ for the myriad ecological crises gathered under its auspice, it is simply not\

    \ the case that, as Ghosh argues, â\x80\x9Cevery human being, past and present,\

    \ has contributed to the present cycle of climate changeâ\x80\x9D (2016, 115)."
  - 'Minneapolis: University of Minnesota Press, 2007.'
  - 'Baltimore, MD: Johns Hopkins University Press, 1993.'
pipeline_tag: sentence-similarity
---


# SentenceTransformer based on thenlper/gte-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-base](https://huggingface.co/thenlper/gte-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [thenlper/gte-base](https://huggingface.co/thenlper/gte-base) <!-- at revision 5e95d41db6721e7cbd5006e99c7508f0083223d6 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("sentence_transformers_model_id")

# Run inference

sentences = [

    'And then comes the figure of the human in the age of the Anthropocene, the era when humans act as a geological force on the planet, changing its climate for millennia to come.',

    'â\x80\x98Anthropoceneâ\x80\x99 means, after all, â\x80\x98new Man time.â\x80\x99 For, while the Anthropocene, as a name, claims a generalised human agency responsible for the myriad ecological crises gathered under its auspice, it is simply not the case that, as Ghosh argues, â\x80\x9cevery human being, past and present, has contributed to the present cycle of climate changeâ\x80\x9d (2016, 115).',

    'Minneapolis: University of Minnesota Press, 2007.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 134,934 training samples
* Columns: <code>inp1</code>, <code>inp2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | inp1                                                                               | inp2                                                                               | score                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                           |
  | details | <ul><li>min: 8 tokens</li><li>mean: 38.09 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 32.43 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: -1.0</li><li>mean: -0.8</li><li>max: 1.0</li></ul> |
* Samples:
  | inp1                                                                                                                                                                                                                                                                                                                        | inp2                                                                                                                                                                                                                                                                                                                                                                  | score            |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>Following the lead of John Guillory in Cultural Capital: The Problem of Literary Canon Formation, I would argue that such theoretical arguments characteristically concern an “imaginary canon”—imaginary in that there is no specifically defined body of works or authors that make up such a canon.</code> | <code>“Brooks’s theory,” guillory writes in Cultural Capital: The Problem of Liter- ary Canon Formation (Chicago: Univ.</code>                                                                                                                                                                                                                                  | <code>1.0</code> |
  | <code>Cultural Capital: The Problem of Literary Canon Formation.</code>                                                                                                                                                                                                                                                     | <code>“Brooks’s theory,” guillory writes in Cultural Capital: The Problem of Liter- ary Canon Formation (Chicago: Univ.</code>                                                                                                                                                                                                                                  | <code>1.0</code> |
  | <code>A partic- ularly good example of the complex operations of critical attention and peda- gogical appropriation occurs with Zora Neale Hurston’s Their Eyes Were Watching God.</code>                                                                                                                                 | <code>Similarly, in her article comparing the image patterns in Zora Neale Hurston’s Their Eyes Were Watching God and Beloved, Glenda B. Weathers also observes the dichotomous function of the trees in Beloved and argues, “They posit knowledge of both good and evil” (2005, 201) for black Americans seek- ing freedom from slavery and oppression.</code> | <code>1.0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json

  {

      "scale": 20.0,

      "similarity_fct": "pairwise_cos_sim"

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step  | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0119 | 100   | 2.2069        |
| 0.0237 | 200   | 2.3883        |
| 0.0119 | 100   | 1.8358        |
| 0.0237 | 200   | 1.974         |
| 0.0356 | 300   | 1.8488        |
| 0.0474 | 400   | 1.8799        |
| 0.0593 | 500   | 2.0132        |
| 0.0711 | 600   | 1.8831        |
| 0.0830 | 700   | 1.601         |
| 0.0948 | 800   | 2.0316        |
| 0.1067 | 900   | 1.9483        |
| 0.1185 | 1000  | 1.6585        |
| 0.1304 | 1100  | 1.7986        |
| 0.1422 | 1200  | 1.4978        |
| 0.1541 | 1300  | 1.6035        |
| 0.1660 | 1400  | 1.9908        |
| 0.1778 | 1500  | 1.2896        |
| 0.1897 | 1600  | 1.97          |
| 0.2015 | 1700  | 1.9622        |
| 0.2134 | 1800  | 1.4706        |
| 0.2252 | 1900  | 1.5162        |
| 0.2371 | 2000  | 1.6988        |
| 0.2489 | 2100  | 1.6552        |
| 0.2608 | 2200  | 1.7779        |
| 0.2726 | 2300  | 1.9001        |
| 0.2845 | 2400  | 1.7802        |
| 0.2963 | 2500  | 1.6582        |
| 0.3082 | 2600  | 1.377         |
| 0.3201 | 2700  | 1.473         |
| 0.3319 | 2800  | 1.441         |
| 0.3438 | 2900  | 1.8727        |
| 0.3556 | 3000  | 1.1545        |
| 0.3675 | 3100  | 1.7319        |
| 0.3793 | 3200  | 1.9862        |
| 0.3912 | 3300  | 1.467         |
| 0.4030 | 3400  | 2.125         |
| 0.4149 | 3500  | 2.0474        |
| 0.4267 | 3600  | 1.7078        |
| 0.4386 | 3700  | 1.7791        |
| 0.4505 | 3800  | 1.6368        |
| 0.4623 | 3900  | 1.4451        |
| 0.4742 | 4000  | 1.5612        |
| 0.4860 | 4100  | 1.3163        |
| 0.4979 | 4200  | 1.5675        |
| 0.5097 | 4300  | 1.2766        |
| 0.5216 | 4400  | 1.4506        |
| 0.5334 | 4500  | 0.9601        |
| 0.5453 | 4600  | 1.4118        |
| 0.5571 | 4700  | 1.3951        |
| 0.5690 | 4800  | 1.2048        |
| 0.5808 | 4900  | 1.1108        |
| 0.5927 | 5000  | 1.5696        |
| 0.6046 | 5100  | 1.4223        |
| 0.6164 | 5200  | 1.1789        |
| 0.6283 | 5300  | 1.1573        |
| 0.6401 | 5400  | 1.4457        |
| 0.6520 | 5500  | 1.6622        |
| 0.6638 | 5600  | 1.2699        |
| 0.6757 | 5700  | 1.0191        |
| 0.6875 | 5800  | 1.2764        |
| 0.6994 | 5900  | 0.8999        |
| 0.6046 | 5100  | 1.5085        |
| 0.6164 | 5200  | 1.3738        |
| 0.6283 | 5300  | 1.0537        |
| 0.6401 | 5400  | 1.3578        |
| 0.6520 | 5500  | 1.6301        |
| 0.6638 | 5600  | 1.091         |
| 0.6757 | 5700  | 0.9261        |
| 0.6875 | 5800  | 1.1276        |
| 0.6994 | 5900  | 0.7678        |
| 0.6047 | 5100  | 1.2021        |
| 0.6166 | 5200  | 0.8787        |
| 0.6284 | 5300  | 0.6169        |
| 0.6403 | 5400  | 0.9881        |
| 0.6521 | 5500  | 1.1844        |
| 0.6640 | 5600  | 1.032         |
| 0.6758 | 5700  | 0.8486        |
| 0.6877 | 5800  | 1.4845        |
| 0.6995 | 5900  | 1.4           |
| 0.7114 | 6000  | 0.9685        |
| 0.7233 | 6100  | 0.9288        |
| 0.7351 | 6200  | 1.4682        |
| 0.7470 | 6300  | 0.6551        |
| 0.7588 | 6400  | 0.5513        |
| 0.7707 | 6500  | 0.6092        |
| 0.7825 | 6600  | 1.3235        |
| 0.7944 | 6700  | 0.4917        |
| 0.8063 | 6800  | 0.8944        |
| 0.8181 | 6900  | 0.9298        |
| 0.8300 | 7000  | 1.1134        |
| 0.8418 | 7100  | 0.8254        |
| 0.8537 | 7200  | 1.3363        |
| 0.8655 | 7300  | 0.6571        |
| 0.8774 | 7400  | 0.8209        |
| 0.8893 | 7500  | 0.6508        |
| 0.9011 | 7600  | 1.1972        |
| 0.9130 | 7700  | 1.1095        |
| 0.9248 | 7800  | 0.8772        |
| 0.9367 | 7900  | 1.0623        |
| 0.9485 | 8000  | 0.6073        |
| 0.9604 | 8100  | 0.8292        |
| 0.9723 | 8200  | 0.6765        |
| 0.9841 | 8300  | 0.5103        |
| 0.9960 | 8400  | 1.0618        |
| 1.0078 | 8500  | 0.5134        |
| 1.0197 | 8600  | 0.5203        |
| 1.0315 | 8700  | 0.6634        |
| 1.0434 | 8800  | 0.6644        |
| 1.0553 | 8900  | 0.7459        |
| 1.0671 | 9000  | 0.5969        |
| 1.0790 | 9100  | 0.5473        |
| 1.0908 | 9200  | 0.5495        |
| 1.1027 | 9300  | 0.5093        |
| 1.1145 | 9400  | 0.7049        |
| 1.1264 | 9500  | 0.726         |
| 1.1382 | 9600  | 0.6512        |
| 1.1501 | 9700  | 0.5121        |
| 1.1620 | 9800  | 0.5977        |
| 1.1738 | 9900  | 0.4933        |
| 1.1857 | 10000 | 0.8585        |
| 1.1975 | 10100 | 0.2955        |
| 1.2094 | 10200 | 0.6972        |
| 1.2212 | 10300 | 0.454         |
| 1.2331 | 10400 | 1.1057        |
| 1.2450 | 10500 | 0.9724        |
| 1.2568 | 10600 | 0.3057        |
| 1.2687 | 10700 | 0.5967        |
| 1.2805 | 10800 | 0.7332        |
| 1.2924 | 10900 | 0.5382        |
| 1.3042 | 11000 | 0.625         |
| 1.3161 | 11100 | 0.5354        |
| 1.3280 | 11200 | 0.4289        |
| 1.3398 | 11300 | 0.4243        |
| 1.3517 | 11400 | 0.6902        |
| 1.3635 | 11500 | 0.4248        |
| 1.3754 | 11600 | 0.3743        |
| 1.3872 | 11700 | 0.5463        |
| 1.3991 | 11800 | 0.8413        |
| 1.4110 | 11900 | 0.4748        |
| 1.4228 | 12000 | 0.56          |
| 1.4347 | 12100 | 0.9269        |
| 1.4465 | 12200 | 0.4668        |
| 1.4584 | 12300 | 0.4842        |
| 1.4702 | 12400 | 0.5172        |
| 1.4821 | 12500 | 0.4498        |
| 1.4940 | 12600 | 0.4695        |
| 1.5058 | 12700 | 0.2144        |
| 1.5177 | 12800 | 0.8002        |
| 1.5295 | 12900 | 0.4022        |
| 1.5414 | 13000 | 0.4491        |
| 1.5532 | 13100 | 0.4798        |
| 1.5651 | 13200 | 0.7489        |
| 1.5770 | 13300 | 0.6108        |
| 1.5888 | 13400 | 0.3806        |
| 1.6007 | 13500 | 0.4164        |
| 1.6125 | 13600 | 0.6362        |
| 1.6244 | 13700 | 0.4773        |
| 1.6362 | 13800 | 0.4875        |
| 1.6481 | 13900 | 0.5577        |
| 1.6599 | 14000 | 0.3318        |
| 1.6718 | 14100 | 0.2959        |
| 1.6837 | 14200 | 0.3168        |
| 1.6955 | 14300 | 0.403         |
| 1.7074 | 14400 | 0.6553        |
| 1.7192 | 14500 | 0.5814        |
| 1.7311 | 14600 | 0.3407        |
| 1.7429 | 14700 | 0.3985        |
| 1.7548 | 14800 | 0.406         |
| 1.7667 | 14900 | 0.5986        |
| 1.7785 | 15000 | 0.7694        |
| 1.7904 | 15100 | 0.5025        |
| 1.8022 | 15200 | 0.7199        |
| 1.8141 | 15300 | 0.4215        |
| 1.8259 | 15400 | 0.5484        |
| 1.8378 | 15500 | 0.3551        |
| 1.8497 | 15600 | 0.3572        |
| 1.8615 | 15700 | 0.3536        |
| 1.8734 | 15800 | 0.5116        |
| 1.8852 | 15900 | 0.7094        |
| 1.8971 | 16000 | 0.4402        |
| 1.9089 | 16100 | 0.4095        |
| 1.9208 | 16200 | 0.2173        |
| 1.9327 | 16300 | 0.6058        |
| 1.9445 | 16400 | 0.7796        |
| 1.9564 | 16500 | 0.5642        |
| 1.9682 | 16600 | 0.3085        |
| 1.9801 | 16700 | 0.4308        |
| 1.9919 | 16800 | 0.3712        |

</details>

### Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.2.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```

#### CoSENTLoss
```bibtex

@online{kexuefm-8847,

    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},

    author={Su Jianlin},

    year={2022},

    month={Jan},

    url={https://kexue.fm/archives/8847},

}

```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->