luanafelbarros commited on
Commit
71d21a9
·
verified ·
1 Parent(s): 5b5233c

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,692 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - multilingual
5
+ - ar
6
+ - bg
7
+ - ca
8
+ - cs
9
+ - da
10
+ - de
11
+ - el
12
+ - es
13
+ - et
14
+ - fa
15
+ - fi
16
+ - fr
17
+ - gl
18
+ - gu
19
+ - he
20
+ - hi
21
+ - hr
22
+ - hu
23
+ - hy
24
+ - id
25
+ - it
26
+ - ja
27
+ - ka
28
+ - ko
29
+ - ku
30
+ - lt
31
+ - lv
32
+ - mk
33
+ - mn
34
+ - mr
35
+ - ms
36
+ - my
37
+ - nb
38
+ - nl
39
+ - pl
40
+ - pt
41
+ - ro
42
+ - ru
43
+ - sk
44
+ - sl
45
+ - sq
46
+ - sr
47
+ - sv
48
+ - th
49
+ - tr
50
+ - uk
51
+ - ur
52
+ - vi
53
+ - zh
54
+ tags:
55
+ - sentence-transformers
56
+ - sentence-similarity
57
+ - feature-extraction
58
+ - generated_from_trainer
59
+ - dataset_size:3560698
60
+ - loss:ModifiedMatryoshkaLoss
61
+ - loss:MSELoss
62
+ base_model: google-bert/bert-base-multilingual-cased
63
+ widget:
64
+ - source_sentence: We cope with this pressure by having brains, and within our brains,
65
+ decision-making centers that I've called here the "Actor."
66
+ sentences:
67
+ - Nós lidamos com esta pressão porque temos cérebro, e dentro do nosso cérebro,
68
+ centros de tomada de decisão a que eu chamei aqui o "Ator".
69
+ - Isto significa que o Crítico deve ter falado naquele animal, e que o Crítico deve
70
+ estar contido entre os neurónios produtores de dopamina na esquerda, mas não nos
71
+ neurónios produtores de dopamina na direita.
72
+ - Na ressonância magnética e na espetroscopia de MR — a atividade do tumor está
73
+ a vermelho —
74
+ - source_sentence: Once it's a closed system, you will have legal liability if you
75
+ do not urge your CEO to get the maximum income from reducing and trading the carbon
76
+ emissions that can be avoided.
77
+ sentences:
78
+ - (Risas) Espero que las conversaciones aquí en TED me ayuden a terminarla.
79
+ - Una vez que es un sistema cerrado, tendrán responsabilidad legal si no exhortan
80
+ a su ejecutivo en jefe a obtener el máximo ingreso de la reducción y comercialización
81
+ de emisiones de carbono que pueden ser evitadas.
82
+ - Pero también son muy efectivas en desviar nuestro camino.
83
+ - source_sentence: Whenever it comes up to the midpoint, it pauses, it carefully scans
84
+ the odor interface as if it was sniffing out its environment, and then it turns
85
+ around.
86
+ sentences:
87
+ - Tiene que decidir si dar la vuelta y quedarse en el mismo olor, o si cruzar la
88
+ línea del medio y probar algo nuevo.
89
+ - Ésta es una oportunidad.
90
+ - Cada vez que llega al medio, se detiene analiza con cuidado la interfaz de olor,
91
+ como si estuviera olfateando su entorno, y luego da la vuelta.
92
+ - source_sentence: You've seen the documentaries of sweatshops making garments all
93
+ over the world, even in developed countries.
94
+ sentences:
95
+ - No llegaron muy lejos, obviamente.
96
+ - Uds ya han visto documentales de los talleres de confección de prendas en todo
97
+ el mundo, incluso en los países desarrollados.
98
+ - Y los maestros también están frustrados.
99
+ - source_sentence: It's hands-on, it's in-your-face, it requires an active engagement,
100
+ and it allows kids to apply all the core subject learning in real ways.
101
+ sentences:
102
+ - É prático, é presencial, isso requer uma participação ativa, e permite que as
103
+ crianças apliquem todos os tópicos importantes de aprendizagem de forma real.
104
+ - E no mundo do áudio que é quando o microfone fica muito perto da origem do som,
105
+ e então ele entra nessa repetição auto-destrutiva que cria um som muito desagradável.
106
+ - Vamos encarar a realidade, o contrato de uma grande marca multinacional para um
107
+ fornecedor na Índia ou China tem um poder persuasivo muito maior do que as leis
108
+ locais de trabalho, do que as regras ambientais locais, do que os padrões locais
109
+ de Direitos Humanos.
110
+ datasets:
111
+ - sentence-transformers/parallel-sentences-talks
112
+ pipeline_tag: sentence-similarity
113
+ library_name: sentence-transformers
114
+ metrics:
115
+ - negative_mse
116
+ model-index:
117
+ - name: SentenceTransformer based on google-bert/bert-base-multilingual-cased
118
+ results:
119
+ - task:
120
+ type: knowledge-distillation
121
+ name: Knowledge Distillation
122
+ dataset:
123
+ name: MSE val en es
124
+ type: MSE-val-en-es
125
+ metrics:
126
+ - type: negative_mse
127
+ value: -31.554964184761047
128
+ name: Negative Mse
129
+ - task:
130
+ type: knowledge-distillation
131
+ name: Knowledge Distillation
132
+ dataset:
133
+ name: MSE val en pt
134
+ type: MSE-val-en-pt
135
+ metrics:
136
+ - type: negative_mse
137
+ value: -31.72471523284912
138
+ name: Negative Mse
139
+ - task:
140
+ type: knowledge-distillation
141
+ name: Knowledge Distillation
142
+ dataset:
143
+ name: MSE val en pt br
144
+ type: MSE-val-en-pt-br
145
+ metrics:
146
+ - type: negative_mse
147
+ value: -30.244168639183044
148
+ name: Negative Mse
149
+ ---
150
+
151
+ # SentenceTransformer based on google-bert/bert-base-multilingual-cased
152
+
153
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the en-es, en-pt and [en-pt-br](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
154
+
155
+ ## Model Details
156
+
157
+ ### Model Description
158
+ - **Model Type:** Sentence Transformer
159
+ - **Base model:** [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) <!-- at revision 3f076fdb1ab68d5b2880cb87a0886f315b8146f8 -->
160
+ - **Maximum Sequence Length:** 128 tokens
161
+ - **Output Dimensionality:** 768 dimensions
162
+ - **Similarity Function:** Cosine Similarity
163
+ - **Training Datasets:**
164
+ - en-es
165
+ - en-pt
166
+ - [en-pt-br](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
167
+ - **Languages:** en, multilingual, ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh
168
+ <!-- - **License:** Unknown -->
169
+
170
+ ### Model Sources
171
+
172
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
173
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
174
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
175
+
176
+ ### Full Model Architecture
177
+
178
+ ```
179
+ SentenceTransformer(
180
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
181
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
182
+ )
183
+ ```
184
+
185
+ ## Usage
186
+
187
+ ### Direct Usage (Sentence Transformers)
188
+
189
+ First install the Sentence Transformers library:
190
+
191
+ ```bash
192
+ pip install -U sentence-transformers
193
+ ```
194
+
195
+ Then you can load this model and run inference.
196
+ ```python
197
+ from sentence_transformers import SentenceTransformer
198
+
199
+ # Download from the 🤗 Hub
200
+ model = SentenceTransformer("luanafelbarros/bert-es-pt-cased-matryoshka")
201
+ # Run inference
202
+ sentences = [
203
+ "It's hands-on, it's in-your-face, it requires an active engagement, and it allows kids to apply all the core subject learning in real ways.",
204
+ 'É prático, é presencial, isso requer uma participação ativa, e permite que as crianças apliquem todos os tópicos importantes de aprendizagem de forma real.',
205
+ 'Vamos encarar a realidade, o contrato de uma grande marca multinacional para um fornecedor na Índia ou China tem um poder persuasivo muito maior do que as leis locais de trabalho, do que as regras ambientais locais, do que os padrões locais de Direitos Humanos.',
206
+ ]
207
+ embeddings = model.encode(sentences)
208
+ print(embeddings.shape)
209
+ # [3, 768]
210
+
211
+ # Get the similarity scores for the embeddings
212
+ similarities = model.similarity(embeddings, embeddings)
213
+ print(similarities.shape)
214
+ # [3, 3]
215
+ ```
216
+
217
+ <!--
218
+ ### Direct Usage (Transformers)
219
+
220
+ <details><summary>Click to see the direct usage in Transformers</summary>
221
+
222
+ </details>
223
+ -->
224
+
225
+ <!--
226
+ ### Downstream Usage (Sentence Transformers)
227
+
228
+ You can finetune this model on your own dataset.
229
+
230
+ <details><summary>Click to expand</summary>
231
+
232
+ </details>
233
+ -->
234
+
235
+ <!--
236
+ ### Out-of-Scope Use
237
+
238
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
239
+ -->
240
+
241
+ ## Evaluation
242
+
243
+ ### Metrics
244
+
245
+ #### Knowledge Distillation
246
+
247
+ * Datasets: `MSE-val-en-es`, `MSE-val-en-pt` and `MSE-val-en-pt-br`
248
+ * Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
249
+
250
+ | Metric | MSE-val-en-es | MSE-val-en-pt | MSE-val-en-pt-br |
251
+ |:-----------------|:--------------|:--------------|:-----------------|
252
+ | **negative_mse** | **-31.555** | **-31.7247** | **-30.2442** |
253
+
254
+ <!--
255
+ ## Bias, Risks and Limitations
256
+
257
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
258
+ -->
259
+
260
+ <!--
261
+ ### Recommendations
262
+
263
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
264
+ -->
265
+
266
+ ## Training Details
267
+
268
+ ### Training Datasets
269
+
270
+ #### en-es
271
+
272
+ * Dataset: en-es
273
+ * Size: 1,612,538 training samples
274
+ * Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
275
+ * Approximate statistics based on the first 1000 samples:
276
+ | | english | non_english | label |
277
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
278
+ | type | string | string | list |
279
+ | details | <ul><li>min: 4 tokens</li><li>mean: 25.46 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.67 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
280
+ * Samples:
281
+ | english | non_english | label |
282
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|
283
+ | <code>And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.</code> | <code>Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.</code> | <code>[-0.015244179405272007, 0.04601434990763664, -0.052873335778713226, 0.03535117208957672, -0.039562877267599106, ...]</code> |
284
+ | <code>One thing I often ask about is ancient Greek and how this relates.</code> | <code>Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.</code> | <code>[0.0012022971641272306, -0.009590390138328075, -0.032977133989334106, 0.017047710716724396, -0.0028919472824782133, ...]</code> |
285
+ | <code>See, the thing we're doing right now is we're forcing people to learn mathematics.</code> | <code>Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.</code> | <code>[-0.019420800730586052, 0.10435999929904938, 0.009455346502363682, -0.02814250998198986, -0.017036104574799538, ...]</code> |
286
+ * Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
287
+ ```json
288
+ {
289
+ "loss": "MSELoss",
290
+ "matryoshka_dims": [
291
+ 768,
292
+ 512,
293
+ 256,
294
+ 128,
295
+ 64
296
+ ],
297
+ "matryoshka_weights": [
298
+ 1,
299
+ 1,
300
+ 1,
301
+ 1,
302
+ 1
303
+ ],
304
+ "n_dims_per_step": -1
305
+ }
306
+ ```
307
+
308
+ #### en-pt
309
+
310
+ * Dataset: en-pt
311
+ * Size: 1,542,353 training samples
312
+ * Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
313
+ * Approximate statistics based on the first 1000 samples:
314
+ | | english | non_english | label |
315
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
316
+ | type | string | string | list |
317
+ | details | <ul><li>min: 5 tokens</li><li>mean: 24.95 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 27.08 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
318
+ * Samples:
319
+ | english | non_english | label |
320
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
321
+ | <code>And the country that does this first will, in my view, leapfrog others in achieving a new economy even, an improved economy, an improved outlook.</code> | <code>E o país que fizer isto primeiro vai, na minha opinião, ultrapassar outros em alcançar uma nova economia até uma economia melhorada, uma visão melhorada.</code> | <code>[-0.016568265855312347, 0.10754051059484482, -0.025950804352760315, -0.045048732310533524, 0.01812679134309292, ...]</code> |
322
+ | <code>In fact, I even talk about us moving from what we often call now the "knowledge economy" to what we might call a "computational knowledge economy," where high-level math is integral to what everyone does in the way that knowledge currently is.</code> | <code>De facto, eu até falo de mudarmos do que chamamos hoje a economia do conhecimento para o que poderemos chamar a economia do conhecimento computacional, onde a matemática de alto nível está integrada no que toda a gente faz da forma que o conhecimento actualmente está.</code> | <code>[-0.014394757337868214, 0.11997982114553452, -0.041491635143756866, -0.024539340287446976, 0.01425645500421524, ...]</code> |
323
+ | <code>We can engage so many more students with this, and they can have a better time doing it.</code> | <code>Podemos cativar tantos mais estudantes com isto, e eles podem divertir-se mais a fazê-lo.</code> | <code>[-0.034232210367918015, 0.04277702793478966, -0.05683526396751404, -0.006559622474014759, -0.00639274762943387, ...]</code> |
324
+ * Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
325
+ ```json
326
+ {
327
+ "loss": "MSELoss",
328
+ "matryoshka_dims": [
329
+ 768,
330
+ 512,
331
+ 256,
332
+ 128,
333
+ 64
334
+ ],
335
+ "matryoshka_weights": [
336
+ 1,
337
+ 1,
338
+ 1,
339
+ 1,
340
+ 1
341
+ ],
342
+ "n_dims_per_step": -1
343
+ }
344
+ ```
345
+
346
+ #### en-pt-br
347
+
348
+ * Dataset: [en-pt-br](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [0c70bc6](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/0c70bc6714efb1df12f8a16b9056e4653563d128)
349
+ * Size: 405,807 training samples
350
+ * Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
351
+ * Approximate statistics based on the first 1000 samples:
352
+ | | english | non_english | label |
353
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
354
+ | type | string | string | list |
355
+ | details | <ul><li>min: 4 tokens</li><li>mean: 25.39 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 27.52 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
356
+ * Samples:
357
+ | english | non_english | label |
358
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|
359
+ | <code>And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.</code> | <code>E também existem alguns aspectos conceituais que também podem se beneficiar do cálculo manual, mas eu acho que eles são relativamente poucos.</code> | <code>[-0.015244179405272007, 0.04601434990763664, -0.052873335778713226, 0.03535117208957672, -0.039562877267599106, ...]</code> |
360
+ | <code>One thing I often ask about is ancient Greek and how this relates.</code> | <code>Uma coisa sobre a qual eu pergunto com frequencia é grego antigo e como ele se relaciona a isto.</code> | <code>[0.0012022971641272306, -0.009590390138328075, -0.032977133989334106, 0.017047710716724396, -0.0028919472824782133, ...]</code> |
361
+ | <code>See, the thing we're doing right now is we're forcing people to learn mathematics.</code> | <code>Vejam, o que estamos fazendo agora, é que estamos forçando as pessoas a aprender matemática.</code> | <code>[-0.019420800730586052, 0.10435999929904938, 0.009455346502363682, -0.02814250998198986, -0.017036104574799538, ...]</code> |
362
+ * Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
363
+ ```json
364
+ {
365
+ "loss": "MSELoss",
366
+ "matryoshka_dims": [
367
+ 768,
368
+ 512,
369
+ 256,
370
+ 128,
371
+ 64
372
+ ],
373
+ "matryoshka_weights": [
374
+ 1,
375
+ 1,
376
+ 1,
377
+ 1,
378
+ 1
379
+ ],
380
+ "n_dims_per_step": -1
381
+ }
382
+ ```
383
+
384
+ ### Evaluation Datasets
385
+
386
+ #### en-es
387
+
388
+ * Dataset: en-es
389
+ * Size: 2,990 evaluation samples
390
+ * Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
391
+ * Approximate statistics based on the first 1000 samples:
392
+ | | english | non_english | label |
393
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
394
+ | type | string | string | list |
395
+ | details | <ul><li>min: 4 tokens</li><li>mean: 25.68 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.31 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
396
+ * Samples:
397
+ | english | non_english | label |
398
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
399
+ | <code>Thank you so much, Chris.</code> | <code>Muchas gracias Chris.</code> | <code>[-0.061677999794483185, -0.04450423642992973, -0.0325058177113533, -0.06641444563865662, 0.003981702029705048, ...]</code> |
400
+ | <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code> | <code>Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.</code> | <code>[0.011398610658943653, -0.02500406838953495, -0.009884772822260857, 0.009336909279227257, 0.0030828709714114666, ...]</code> |
401
+ | <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.</code> | <code>[-0.03842132166028023, 0.03635749593377113, -0.02491452544927597, -0.0032229204662144184, 0.0003549510147422552, ...]</code> |
402
+ * Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
403
+ ```json
404
+ {
405
+ "loss": "MSELoss",
406
+ "matryoshka_dims": [
407
+ 768,
408
+ 512,
409
+ 256,
410
+ 128,
411
+ 64
412
+ ],
413
+ "matryoshka_weights": [
414
+ 1,
415
+ 1,
416
+ 1,
417
+ 1,
418
+ 1
419
+ ],
420
+ "n_dims_per_step": -1
421
+ }
422
+ ```
423
+
424
+ #### en-pt
425
+
426
+ * Dataset: en-pt
427
+ * Size: 2,992 evaluation samples
428
+ * Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
429
+ * Approximate statistics based on the first 1000 samples:
430
+ | | english | non_english | label |
431
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
432
+ | type | string | string | list |
433
+ | details | <ul><li>min: 4 tokens</li><li>mean: 25.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.58 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
434
+ * Samples:
435
+ | english | non_english | label |
436
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
437
+ | <code>Thank you so much, Chris.</code> | <code>Muito obrigado, Chris.</code> | <code>[-0.06167794018983841, -0.04450422152876854, -0.032505810260772705, -0.06641443818807602, 0.0039817155338823795, ...]</code> |
438
+ | <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code> | <code>É realmente uma grande honra ter a oportunidade de pisar este palco pela segunda vez. Estou muito agradecido.</code> | <code>[0.011398610658943653, -0.02500406838953495, -0.009884772822260857, 0.009336909279227257, 0.0030828709714114666, ...]</code> |
439
+ | <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>Fiquei muito impressionado com esta conferência e quero agradecer a todos os imensos comentários simpáticos sobre o que eu tinha a dizer naquela noite.</code> | <code>[-0.03842132166028023, 0.03635749593377113, -0.02491452544927597, -0.0032229204662144184, 0.0003549510147422552, ...]</code> |
440
+ * Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
441
+ ```json
442
+ {
443
+ "loss": "MSELoss",
444
+ "matryoshka_dims": [
445
+ 768,
446
+ 512,
447
+ 256,
448
+ 128,
449
+ 64
450
+ ],
451
+ "matryoshka_weights": [
452
+ 1,
453
+ 1,
454
+ 1,
455
+ 1,
456
+ 1
457
+ ],
458
+ "n_dims_per_step": -1
459
+ }
460
+ ```
461
+
462
+ #### en-pt-br
463
+
464
+ * Dataset: [en-pt-br](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [0c70bc6](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/0c70bc6714efb1df12f8a16b9056e4653563d128)
465
+ * Size: 992 evaluation samples
466
+ * Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
467
+ * Approximate statistics based on the first 992 samples:
468
+ | | english | non_english | label |
469
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
470
+ | type | string | string | list |
471
+ | details | <ul><li>min: 4 tokens</li><li>mean: 25.8 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 28.92 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
472
+ * Samples:
473
+ | english | non_english | label |
474
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
475
+ | <code>Thank you so much, Chris.</code> | <code>Muito obrigado, Chris.</code> | <code>[-0.0616779662668705, -0.044504180550575256, -0.032505787909030914, -0.06641441583633423, 0.003981734160333872, ...]</code> |
476
+ | <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code> | <code>É realmente uma grande honra ter a oportunidade de estar neste palco pela segunda vez. Estou muito agradecido.</code> | <code>[0.011398598551750183, -0.02500401996076107, -0.009884790517389774, 0.009336900897324085, 0.003082842566072941, ...]</code> |
477
+ | <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>Eu fui muito aplaudido por esta conferência e quero agradecer a todos pelos muitos comentários delicados sobre o que eu tinha a dizer naquela noite.</code> | <code>[-0.03842132166028023, 0.03635749593377113, -0.02491452544927597, -0.0032229204662144184, 0.0003549510147422552, ...]</code> |
478
+ * Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters:
479
+ ```json
480
+ {
481
+ "loss": "MSELoss",
482
+ "matryoshka_dims": [
483
+ 768,
484
+ 512,
485
+ 256,
486
+ 128,
487
+ 64
488
+ ],
489
+ "matryoshka_weights": [
490
+ 1,
491
+ 1,
492
+ 1,
493
+ 1,
494
+ 1
495
+ ],
496
+ "n_dims_per_step": -1
497
+ }
498
+ ```
499
+
500
+ ### Training Hyperparameters
501
+ #### Non-Default Hyperparameters
502
+
503
+ - `eval_strategy`: steps
504
+ - `per_device_train_batch_size`: 256
505
+ - `per_device_eval_batch_size`: 256
506
+ - `learning_rate`: 2e-05
507
+ - `num_train_epochs`: 1
508
+ - `warmup_ratio`: 0.1
509
+ - `fp16`: True
510
+
511
+ #### All Hyperparameters
512
+ <details><summary>Click to expand</summary>
513
+
514
+ - `overwrite_output_dir`: False
515
+ - `do_predict`: False
516
+ - `eval_strategy`: steps
517
+ - `prediction_loss_only`: True
518
+ - `per_device_train_batch_size`: 256
519
+ - `per_device_eval_batch_size`: 256
520
+ - `per_gpu_train_batch_size`: None
521
+ - `per_gpu_eval_batch_size`: None
522
+ - `gradient_accumulation_steps`: 1
523
+ - `eval_accumulation_steps`: None
524
+ - `torch_empty_cache_steps`: None
525
+ - `learning_rate`: 2e-05
526
+ - `weight_decay`: 0.0
527
+ - `adam_beta1`: 0.9
528
+ - `adam_beta2`: 0.999
529
+ - `adam_epsilon`: 1e-08
530
+ - `max_grad_norm`: 1.0
531
+ - `num_train_epochs`: 1
532
+ - `max_steps`: -1
533
+ - `lr_scheduler_type`: linear
534
+ - `lr_scheduler_kwargs`: {}
535
+ - `warmup_ratio`: 0.1
536
+ - `warmup_steps`: 0
537
+ - `log_level`: passive
538
+ - `log_level_replica`: warning
539
+ - `log_on_each_node`: True
540
+ - `logging_nan_inf_filter`: True
541
+ - `save_safetensors`: True
542
+ - `save_on_each_node`: False
543
+ - `save_only_model`: False
544
+ - `restore_callback_states_from_checkpoint`: False
545
+ - `no_cuda`: False
546
+ - `use_cpu`: False
547
+ - `use_mps_device`: False
548
+ - `seed`: 42
549
+ - `data_seed`: None
550
+ - `jit_mode_eval`: False
551
+ - `use_ipex`: False
552
+ - `bf16`: False
553
+ - `fp16`: True
554
+ - `fp16_opt_level`: O1
555
+ - `half_precision_backend`: auto
556
+ - `bf16_full_eval`: False
557
+ - `fp16_full_eval`: False
558
+ - `tf32`: None
559
+ - `local_rank`: 0
560
+ - `ddp_backend`: None
561
+ - `tpu_num_cores`: None
562
+ - `tpu_metrics_debug`: False
563
+ - `debug`: []
564
+ - `dataloader_drop_last`: False
565
+ - `dataloader_num_workers`: 0
566
+ - `dataloader_prefetch_factor`: None
567
+ - `past_index`: -1
568
+ - `disable_tqdm`: False
569
+ - `remove_unused_columns`: True
570
+ - `label_names`: None
571
+ - `load_best_model_at_end`: False
572
+ - `ignore_data_skip`: False
573
+ - `fsdp`: []
574
+ - `fsdp_min_num_params`: 0
575
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
576
+ - `fsdp_transformer_layer_cls_to_wrap`: None
577
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
578
+ - `deepspeed`: None
579
+ - `label_smoothing_factor`: 0.0
580
+ - `optim`: adamw_torch
581
+ - `optim_args`: None
582
+ - `adafactor`: False
583
+ - `group_by_length`: False
584
+ - `length_column_name`: length
585
+ - `ddp_find_unused_parameters`: None
586
+ - `ddp_bucket_cap_mb`: None
587
+ - `ddp_broadcast_buffers`: False
588
+ - `dataloader_pin_memory`: True
589
+ - `dataloader_persistent_workers`: False
590
+ - `skip_memory_metrics`: True
591
+ - `use_legacy_prediction_loop`: False
592
+ - `push_to_hub`: False
593
+ - `resume_from_checkpoint`: None
594
+ - `hub_model_id`: None
595
+ - `hub_strategy`: every_save
596
+ - `hub_private_repo`: False
597
+ - `hub_always_push`: False
598
+ - `gradient_checkpointing`: False
599
+ - `gradient_checkpointing_kwargs`: None
600
+ - `include_inputs_for_metrics`: False
601
+ - `include_for_metrics`: []
602
+ - `eval_do_concat_batches`: True
603
+ - `fp16_backend`: auto
604
+ - `push_to_hub_model_id`: None
605
+ - `push_to_hub_organization`: None
606
+ - `mp_parameters`:
607
+ - `auto_find_batch_size`: False
608
+ - `full_determinism`: False
609
+ - `torchdynamo`: None
610
+ - `ray_scope`: last
611
+ - `ddp_timeout`: 1800
612
+ - `torch_compile`: False
613
+ - `torch_compile_backend`: None
614
+ - `torch_compile_mode`: None
615
+ - `dispatch_batches`: None
616
+ - `split_batches`: None
617
+ - `include_tokens_per_second`: False
618
+ - `include_num_input_tokens_seen`: False
619
+ - `neftune_noise_alpha`: None
620
+ - `optim_target_modules`: None
621
+ - `batch_eval_metrics`: False
622
+ - `eval_on_start`: False
623
+ - `use_liger_kernel`: False
624
+ - `eval_use_gather_object`: False
625
+ - `average_tokens_across_devices`: False
626
+ - `prompts`: None
627
+ - `batch_sampler`: batch_sampler
628
+ - `multi_dataset_batch_sampler`: proportional
629
+
630
+ </details>
631
+
632
+ ### Training Logs
633
+ | Epoch | Step | Training Loss | en-es loss | en-pt loss | en-pt-br loss | MSE-val-en-es_negative_mse | MSE-val-en-pt_negative_mse | MSE-val-en-pt-br_negative_mse |
634
+ |:------:|:-----:|:-------------:|:----------:|:----------:|:-------------:|:--------------------------:|:--------------------------:|:-----------------------------:|
635
+ | 0.0719 | 1000 | 0.028 | 0.0237 | 0.0237 | 0.0231 | -24.8296 | -24.6706 | -25.9588 |
636
+ | 0.1438 | 2000 | 0.0227 | 0.0213 | 0.0215 | 0.0208 | -26.2546 | -26.2964 | -25.9444 |
637
+ | 0.2157 | 3000 | 0.0213 | 0.0203 | 0.0205 | 0.0199 | -27.7589 | -27.8414 | -27.1460 |
638
+ | 0.2876 | 4000 | 0.0206 | 0.0197 | 0.0199 | 0.0193 | -29.1241 | -29.2139 | -28.3021 |
639
+ | 0.3595 | 5000 | 0.0201 | 0.0194 | 0.0195 | 0.0190 | -30.1292 | -30.2692 | -29.0747 |
640
+ | 0.4313 | 6000 | 0.0198 | 0.0190 | 0.0192 | 0.0187 | -30.3807 | -30.4967 | -29.3404 |
641
+ | 0.5032 | 7000 | 0.0195 | 0.0188 | 0.0190 | 0.0185 | -31.0799 | -31.2305 | -29.9549 |
642
+ | 0.5751 | 8000 | 0.0193 | 0.0186 | 0.0188 | 0.0183 | -31.1297 | -31.2883 | -30.0050 |
643
+ | 0.6470 | 9000 | 0.0192 | 0.0185 | 0.0186 | 0.0182 | -31.2788 | -31.4498 | -30.0589 |
644
+ | 0.7189 | 10000 | 0.019 | 0.0184 | 0.0185 | 0.0181 | -31.3215 | -31.4903 | -30.0056 |
645
+ | 0.7908 | 11000 | 0.019 | 0.0183 | 0.0184 | 0.0180 | -31.4416 | -31.6329 | -30.1343 |
646
+ | 0.8627 | 12000 | 0.0189 | 0.0182 | 0.0184 | 0.0180 | -31.5266 | -31.6991 | -30.1956 |
647
+ | 0.9346 | 13000 | 0.0188 | 0.0182 | 0.0183 | 0.0179 | -31.5550 | -31.7247 | -30.2442 |
648
+
649
+
650
+ ### Framework Versions
651
+ - Python: 3.10.12
652
+ - Sentence Transformers: 3.3.1
653
+ - Transformers: 4.46.3
654
+ - PyTorch: 2.5.1+cu121
655
+ - Accelerate: 1.1.1
656
+ - Datasets: 3.1.0
657
+ - Tokenizers: 0.20.3
658
+
659
+ ## Citation
660
+
661
+ ### BibTeX
662
+
663
+ #### Sentence Transformers
664
+ ```bibtex
665
+ @inproceedings{reimers-2019-sentence-bert,
666
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
667
+ author = "Reimers, Nils and Gurevych, Iryna",
668
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
669
+ month = "11",
670
+ year = "2019",
671
+ publisher = "Association for Computational Linguistics",
672
+ url = "https://arxiv.org/abs/1908.10084",
673
+ }
674
+ ```
675
+
676
+ <!--
677
+ ## Glossary
678
+
679
+ *Clearly define terms in order to be accessible across audiences.*
680
+ -->
681
+
682
+ <!--
683
+ ## Model Card Authors
684
+
685
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
686
+ -->
687
+
688
+ <!--
689
+ ## Model Card Contact
690
+
691
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
692
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google-bert/bert-base-multilingual-cased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.46.3",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 119547
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7200caf6dea186097f853f1fd68de8eac6e10ce78f94947828d7381e36033446
3
+ size 711436136
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff