--- license: apache-2.0 --- # About This is a fork of MichalMlodawski/nsfw-image-detection-large which became unavailable. # Usage example ``` from PIL import Image import torch from transformers import AutoProcessor, FocalNetForImageClassification DEVICE = torch.device("cuda") model_path = "lovetillion/nsfw-image-detection-large" # Load the model and feature extractor feature_extractor = AutoProcessor.from_pretrained(model_path) model = FocalNetForImageClassification.from_pretrained(model_path).to(DEVICE) model.eval() # Mapping from model labels to NSFW categories label_to_category = { "LABEL_0": "Safe", "LABEL_1": "Questionable", "LABEL_2": "Unsafe" } filename = "example.png" image = Image.open(filename) inputs = feature_extractor(images=image, return_tensors="pt") inputs.to(DEVICE) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) confidence, predicted = torch.max(probabilities, 1) label = model.config.id2label[predicted.item()] if label != "SAFE": print( label, confidence.item() * 100, filename ) else: print( label, confidence.item() * 100, filename ) ``` # For more information * Live demonstration in a production ensemble workflow: https://piglet.video * Results from our ethical AI whitepaper: https://lovetillion.org/liaise.pdf * Join us on Telegram at https://t.me/pigletproject