--- license: apache-2.0 base_model: facebook/convnextv2-base-22k-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: convnextv2-base-22k-224-finetuned-cassava-leaf-disease results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8827102803738318 --- # convnextv2-base-22k-224-finetuned-cassava-leaf-disease This model is a fine-tuned version of [facebook/convnextv2-base-22k-224](https://huggingface.co/facebook/convnextv2-base-22k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3524 - Accuracy: 0.8827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 360 - eval_batch_size: 360 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 1440 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.504 | 0.96 | 13 | 0.9739 | 0.6159 | | 0.9073 | 2.0 | 27 | 0.5204 | 0.8187 | | 0.4289 | 2.96 | 40 | 0.4312 | 0.85 | | 0.3901 | 4.0 | 54 | 0.3916 | 0.8645 | | 0.34 | 4.96 | 67 | 0.3755 | 0.8715 | | 0.3326 | 6.0 | 81 | 0.3746 | 0.8710 | | 0.3153 | 6.96 | 94 | 0.3684 | 0.8771 | | 0.3103 | 8.0 | 108 | 0.3543 | 0.8780 | | 0.292 | 8.96 | 121 | 0.3620 | 0.8804 | | 0.2953 | 10.0 | 135 | 0.3545 | 0.8794 | | 0.2879 | 10.96 | 148 | 0.3550 | 0.8808 | | 0.2779 | 12.0 | 162 | 0.3504 | 0.8799 | | 0.2736 | 12.96 | 175 | 0.3554 | 0.8818 | | 0.2769 | 14.0 | 189 | 0.3526 | 0.8846 | | 0.2625 | 14.96 | 202 | 0.3527 | 0.8813 | | 0.2625 | 15.41 | 208 | 0.3524 | 0.8827 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.1