louislu9911
commited on
Model save
Browse files- README.md +93 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/convnextv2-base-22k-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: convnextv2-base-22k-224-finetuned-cassava-leaf-disease
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8827102803738318
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# convnextv2-base-22k-224-finetuned-cassava-leaf-disease
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/convnextv2-base-22k-224](https://huggingface.co/facebook/convnextv2-base-22k-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.3524
|
36 |
+
- Accuracy: 0.8827
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 360
|
57 |
+
- eval_batch_size: 360
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 1440
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 16
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 1.504 | 0.96 | 13 | 0.9739 | 0.6159 |
|
71 |
+
| 0.9073 | 2.0 | 27 | 0.5204 | 0.8187 |
|
72 |
+
| 0.4289 | 2.96 | 40 | 0.4312 | 0.85 |
|
73 |
+
| 0.3901 | 4.0 | 54 | 0.3916 | 0.8645 |
|
74 |
+
| 0.34 | 4.96 | 67 | 0.3755 | 0.8715 |
|
75 |
+
| 0.3326 | 6.0 | 81 | 0.3746 | 0.8710 |
|
76 |
+
| 0.3153 | 6.96 | 94 | 0.3684 | 0.8771 |
|
77 |
+
| 0.3103 | 8.0 | 108 | 0.3543 | 0.8780 |
|
78 |
+
| 0.292 | 8.96 | 121 | 0.3620 | 0.8804 |
|
79 |
+
| 0.2953 | 10.0 | 135 | 0.3545 | 0.8794 |
|
80 |
+
| 0.2879 | 10.96 | 148 | 0.3550 | 0.8808 |
|
81 |
+
| 0.2779 | 12.0 | 162 | 0.3504 | 0.8799 |
|
82 |
+
| 0.2736 | 12.96 | 175 | 0.3554 | 0.8818 |
|
83 |
+
| 0.2769 | 14.0 | 189 | 0.3526 | 0.8846 |
|
84 |
+
| 0.2625 | 14.96 | 202 | 0.3527 | 0.8813 |
|
85 |
+
| 0.2625 | 15.41 | 208 | 0.3524 | 0.8827 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.39.3
|
91 |
+
- Pytorch 2.2.1
|
92 |
+
- Datasets 2.18.0
|
93 |
+
- Tokenizers 0.15.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 350837748
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb3218c491ec6b07c11724cd9bf8cb9f26f0ef9cea8f76ecc10ac405075ad04b
|
3 |
size 350837748
|