lombardata
commited on
Upload README.md
Browse files
README.md
CHANGED
@@ -1,124 +1,169 @@
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
4 |
tags:
|
|
|
|
|
5 |
- generated_from_trainer
|
|
|
6 |
model-index:
|
7 |
- name: drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs
|
8 |
results: []
|
9 |
---
|
10 |
|
11 |
-
|
12 |
-
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
-
# drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs
|
15 |
|
16 |
-
This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
|
17 |
-
It achieves the following results on the evaluation set:
|
18 |
- Loss: 0.4061
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
|
41 |
The following hyperparameters were used during training:
|
42 |
-
|
43 |
-
-
|
44 |
-
-
|
45 |
-
-
|
46 |
-
-
|
47 |
-
-
|
48 |
-
-
|
49 |
-
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
---
|
3 |
+
language:
|
4 |
+
- eng
|
5 |
+
license: cc0-1.0
|
6 |
tags:
|
7 |
+
- multilabel-image-classification
|
8 |
+
- multilabel
|
9 |
- generated_from_trainer
|
10 |
+
base_model: drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs
|
11 |
model-index:
|
12 |
- name: drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
+
drone-DinoVdeau-from-binary is a fine-tuned version of [drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs](https://huggingface.co/drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs). It achieves the following results on the test set:
|
|
|
17 |
|
|
|
18 |
|
|
|
|
|
19 |
- Loss: 0.4061
|
20 |
+
- RMSE: 0.2019
|
21 |
+
- MAE: 0.1446
|
22 |
+
- KL Divergence: 0.9802
|
23 |
+
|
24 |
+
---
|
25 |
+
|
26 |
+
# Model description
|
27 |
+
drone-DinoVdeau-from-binary is a model built on top of drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
|
28 |
|
29 |
+
The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
|
30 |
|
31 |
+
- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
|
32 |
|
33 |
+
---
|
34 |
+
|
35 |
+
# Intended uses & limitations
|
36 |
+
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
|
37 |
|
38 |
+
---
|
39 |
|
40 |
+
# Training and evaluation data
|
41 |
+
Details on the estimated number of images for each class are given in the following table:
|
42 |
+
| Class | train | test | val | Total |
|
43 |
+
|:------------------------|--------:|-------:|------:|--------:|
|
44 |
+
| Acropore_branched | 1272 | 394 | 391 | 2057 |
|
45 |
+
| Acropore_digitised | 624 | 223 | 217 | 1064 |
|
46 |
+
| Acropore_tabular | 344 | 144 | 125 | 613 |
|
47 |
+
| Algae | 5236 | 1580 | 1617 | 8433 |
|
48 |
+
| Dead_coral | 2251 | 650 | 655 | 3556 |
|
49 |
+
| Millepore | 233 | 96 | 97 | 426 |
|
50 |
+
| No_acropore_encrusting | 802 | 266 | 285 | 1353 |
|
51 |
+
| No_acropore_massive | 2381 | 826 | 822 | 4029 |
|
52 |
+
| No_acropore_sub_massive | 2020 | 625 | 651 | 3296 |
|
53 |
+
| Rock | 6151 | 2004 | 2004 | 10159 |
|
54 |
+
| Rubble | 5170 | 1648 | 1627 | 8445 |
|
55 |
+
| Sand | 6121 | 2019 | 1978 | 10118 |
|
56 |
|
57 |
+
---
|
58 |
|
59 |
+
# Training procedure
|
60 |
|
61 |
+
## Training hyperparameters
|
62 |
|
63 |
The following hyperparameters were used during training:
|
64 |
+
|
65 |
+
- **Number of Epochs**: 62.0
|
66 |
+
- **Learning Rate**: 0.001
|
67 |
+
- **Train Batch Size**: 16
|
68 |
+
- **Eval Batch Size**: 16
|
69 |
+
- **Optimizer**: Adam
|
70 |
+
- **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
|
71 |
+
- **Freeze Encoder**: Yes
|
72 |
+
- **Data Augmentation**: Yes
|
73 |
+
|
74 |
+
|
75 |
+
## Data Augmentation
|
76 |
+
Data were augmented using the following transformations :
|
77 |
+
|
78 |
+
Train Transforms
|
79 |
+
- **PreProcess**: No additional parameters
|
80 |
+
- **Resize**: probability=1.00
|
81 |
+
- **RandomHorizontalFlip**: probability=0.25
|
82 |
+
- **RandomVerticalFlip**: probability=0.25
|
83 |
+
- **ColorJiggle**: probability=0.25
|
84 |
+
- **RandomPerspective**: probability=0.25
|
85 |
+
- **Normalize**: probability=1.00
|
86 |
+
|
87 |
+
Val Transforms
|
88 |
+
- **PreProcess**: No additional parameters
|
89 |
+
- **Resize**: probability=1.00
|
90 |
+
- **Normalize**: probability=1.00
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
## Training results
|
95 |
+
Epoch | Validation Loss | MAE | RMSE | KL div | Learning Rate
|
96 |
+
--- | --- | --- | --- | --- | ---
|
97 |
+
1 | 0.43063807487487793 | 0.1621 | 0.2210 | 1.0069 | 0.001
|
98 |
+
2 | 0.4245865046977997 | 0.1547 | 0.2179 | 1.3119 | 0.001
|
99 |
+
3 | 0.422325998544693 | 0.1554 | 0.2158 | 1.0982 | 0.001
|
100 |
+
4 | 0.41912660002708435 | 0.1552 | 0.2142 | 1.0414 | 0.001
|
101 |
+
5 | 0.41713497042655945 | 0.1541 | 0.2123 | 1.0698 | 0.001
|
102 |
+
6 | 0.42093637585639954 | 0.1520 | 0.2140 | 1.1959 | 0.001
|
103 |
+
7 | 0.4166290760040283 | 0.1530 | 0.2126 | 1.1709 | 0.001
|
104 |
+
8 | 0.41946443915367126 | 0.1556 | 0.2143 | 0.9712 | 0.001
|
105 |
+
9 | 0.41668570041656494 | 0.1524 | 0.2121 | 1.1432 | 0.001
|
106 |
+
10 | 0.4186115860939026 | 0.1535 | 0.2139 | 0.9121 | 0.001
|
107 |
+
11 | 0.41557687520980835 | 0.1536 | 0.2114 | 0.9950 | 0.001
|
108 |
+
12 | 0.41883811354637146 | 0.1555 | 0.2139 | 1.0106 | 0.001
|
109 |
+
13 | 0.41630858182907104 | 0.1553 | 0.2121 | 1.1482 | 0.001
|
110 |
+
14 | 0.4193180799484253 | 0.1546 | 0.2138 | 1.2111 | 0.001
|
111 |
+
15 | 0.416218638420105 | 0.1542 | 0.2121 | 1.2043 | 0.001
|
112 |
+
16 | 0.41389620304107666 | 0.1528 | 0.2102 | 1.0828 | 0.001
|
113 |
+
17 | 0.4171081781387329 | 0.1564 | 0.2118 | 1.0006 | 0.001
|
114 |
+
18 | 0.4146382212638855 | 0.1507 | 0.2107 | 1.0514 | 0.001
|
115 |
+
19 | 0.41857486963272095 | 0.1532 | 0.2114 | 0.9575 | 0.001
|
116 |
+
20 | 0.41434723138809204 | 0.1513 | 0.2108 | 1.1648 | 0.001
|
117 |
+
21 | 0.4195358157157898 | 0.1533 | 0.2123 | 1.2950 | 0.001
|
118 |
+
22 | 0.4339658319950104 | 0.1524 | 0.2110 | inf | 0.001
|
119 |
+
23 | 0.43265336751937866 | 0.1517 | 0.2085 | nan | 0.0001
|
120 |
+
24 | 0.4384593963623047 | 0.1493 | 0.2092 | nan | 0.0001
|
121 |
+
25 | 0.4271779954433441 | 0.1490 | 0.2074 | inf | 0.0001
|
122 |
+
26 | 0.41048941016197205 | 0.1480 | 0.2075 | 1.1903 | 0.0001
|
123 |
+
27 | 0.4096038341522217 | 0.1494 | 0.2067 | 0.9915 | 0.0001
|
124 |
+
28 | 0.4104350507259369 | 0.1493 | 0.2075 | 0.9669 | 0.0001
|
125 |
+
29 | 0.40966179966926575 | 0.1469 | 0.2069 | 1.0433 | 0.0001
|
126 |
+
30 | 0.4094092547893524 | 0.1490 | 0.2065 | 0.9082 | 0.0001
|
127 |
+
31 | 0.40909385681152344 | 0.1470 | 0.2065 | 1.0120 | 0.0001
|
128 |
+
32 | 0.4084269404411316 | 0.1483 | 0.2060 | 0.9708 | 0.0001
|
129 |
+
33 | 0.40824124217033386 | 0.1474 | 0.2057 | 0.9317 | 0.0001
|
130 |
+
34 | 0.40851354598999023 | 0.1481 | 0.2061 | 0.9619 | 0.0001
|
131 |
+
35 | 0.4072923958301544 | 0.1466 | 0.2054 | 1.0523 | 0.0001
|
132 |
+
36 | 0.40741708874702454 | 0.1460 | 0.2052 | 1.0622 | 0.0001
|
133 |
+
37 | 0.40657544136047363 | 0.1456 | 0.2047 | 1.0201 | 0.0001
|
134 |
+
38 | 0.406360387802124 | 0.1459 | 0.2045 | 1.0557 | 0.0001
|
135 |
+
39 | 0.4077896773815155 | 0.1469 | 0.2056 | 1.0055 | 0.0001
|
136 |
+
40 | 0.4068063199520111 | 0.1464 | 0.2049 | 0.9849 | 0.0001
|
137 |
+
41 | 0.40890073776245117 | 0.1489 | 0.2063 | 0.8999 | 0.0001
|
138 |
+
42 | 0.4068816602230072 | 0.1463 | 0.2049 | 1.0617 | 0.0001
|
139 |
+
43 | 0.40578988194465637 | 0.1450 | 0.2041 | 1.0520 | 0.0001
|
140 |
+
44 | 0.4070681035518646 | 0.1475 | 0.2050 | 1.0054 | 0.0001
|
141 |
+
45 | 0.40669572353363037 | 0.1440 | 0.2047 | 1.1386 | 0.0001
|
142 |
+
46 | 0.40670666098594666 | 0.1457 | 0.2047 | 1.0253 | 0.0001
|
143 |
+
47 | 0.4062415659427643 | 0.1473 | 0.2043 | 1.0430 | 0.0001
|
144 |
+
48 | 0.4064981937408447 | 0.1457 | 0.2048 | 1.1041 | 0.0001
|
145 |
+
49 | 0.40709760785102844 | 0.1463 | 0.2052 | 1.0702 | 0.0001
|
146 |
+
50 | 0.40644556283950806 | 0.1479 | 0.2042 | 0.8917 | 1e-05
|
147 |
+
51 | 0.40579161047935486 | 0.1437 | 0.2041 | 0.9960 | 1e-05
|
148 |
+
52 | 0.40528106689453125 | 0.1446 | 0.2037 | 1.0567 | 1e-05
|
149 |
+
53 | 0.4056229293346405 | 0.1462 | 0.2039 | 1.0205 | 1e-05
|
150 |
+
54 | 0.4058997631072998 | 0.1441 | 0.2041 | 0.9905 | 1e-05
|
151 |
+
55 | 0.4060685932636261 | 0.1471 | 0.2041 | 0.9379 | 1e-05
|
152 |
+
56 | 0.40592971444129944 | 0.1454 | 0.2041 | 0.9696 | 1e-05
|
153 |
+
57 | 0.4058408737182617 | 0.1460 | 0.2041 | 1.0591 | 1e-05
|
154 |
+
58 | 0.4063320457935333 | 0.1460 | 0.2043 | 0.9276 | 1e-05
|
155 |
+
59 | 0.4056239724159241 | 0.1453 | 0.2038 | 0.9794 | 1.0000000000000002e-06
|
156 |
+
60 | 0.40571752190589905 | 0.1446 | 0.2040 | 1.0349 | 1.0000000000000002e-06
|
157 |
+
61 | 0.4058452248573303 | 0.1449 | 0.2041 | 0.9860 | 1.0000000000000002e-06
|
158 |
+
62 | 0.4054276943206787 | 0.1446 | 0.2037 | 0.9528 | 1.0000000000000002e-06
|
159 |
+
|
160 |
+
|
161 |
+
---
|
162 |
+
|
163 |
+
# Framework Versions
|
164 |
+
|
165 |
+
- **Transformers**: 4.41.0
|
166 |
+
- **Pytorch**: 2.5.0+cu124
|
167 |
+
- **Datasets**: 3.0.2
|
168 |
+
- **Tokenizers**: 0.19.1
|
169 |
+
|