--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - Anthropic/hh-rlhf --- [Pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) finetuned using original DPO code with the helpful subset of [Anthropic-hh-rlhf dataset](https://huggingface.co/datasets/Anthropic/hh-rlhf) for 1 epoch. Checkpoints are also uploaded. Fully reproducible finetuning code is available on [GitHub](https://github.com/lauraaisling/direct-preference-optimization/tree/main) [wandb log](https://wandb.ai/lauraomahony999/pythia-dpo/runs/3djpa41v) See [Pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) for model details [(paper)](https://arxiv.org/abs/2101.00027). See further details of these models in the paper [Attributing Mode Collapse in the Fine-Tuning of Large Language Models](https://openreview.net/pdf?id=3pDMYjpOxk). You can cite these models if they are helpful as follows:
@inproceedings{o2024attributing, title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models}, author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella}, booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop}, year={2024} }hf (pretrained=lomahony/pythia-160m-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16 | Tasks |Version|Filter|n-shot| Metric | Value | |Stderr | |--------------|------:|------|-----:|---------------|-------:|---|-------| |arc_challenge | 1|none | 0|acc | 0.2125|± | 0.0120| | | |none | 0|acc_norm | 0.2312|± | 0.0123| |arc_easy | 1|none | 0|acc | 0.3965|± | 0.0100| | | |none | 0|acc_norm | 0.3830|± | 0.0100| |boolq | 2|none | 0|acc | 0.5853|± | 0.0086| |hellaswag | 1|none | 0|acc | 0.2811|± | 0.0045| | | |none | 0|acc_norm | 0.2940|± | 0.0045| |lambada_openai| 1|none | 0|perplexity |444.4464|± |24.5439| | | |none | 0|acc | 0.1034|± | 0.0042| |openbookqa | 1|none | 0|acc | 0.1500|± | 0.0160| | | |none | 0|acc_norm | 0.2480|± | 0.0193| |piqa | 1|none | 0|acc | 0.5947|± | 0.0115| | | |none | 0|acc_norm | 0.5876|± | 0.0115| |sciq | 1|none | 0|acc | 0.5880|± | 0.0156| | | |none | 0|acc_norm | 0.6180|± | 0.0154| |wikitext | 2|none | 0|word_perplexity| 88.8633|± |N/A | | | |none | 0|byte_perplexity| 2.3143|± |N/A | | | |none | 0|bits_per_byte | 1.2106|± |N/A | |winogrande | 1|none | 0|acc | 0.4980|± | 0.0141| hf (pretrained=lomahony/pythia-160m-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16 | Tasks |Version|Filter|n-shot| Metric | Value | |Stderr | |--------------|------:|------|-----:|---------------|--------:|---|-------| |arc_challenge | 1|none | 5|acc | 0.1928|± | 0.0115| | | |none | 5|acc_norm | 0.2398|± | 0.0125| |arc_easy | 1|none | 5|acc | 0.3678|± | 0.0099| | | |none | 5|acc_norm | 0.3657|± | 0.0099| |boolq | 2|none | 5|acc | 0.5841|± | 0.0086| |hellaswag | 1|none | 5|acc | 0.2807|± | 0.0045| | | |none | 5|acc_norm | 0.2876|± | 0.0045| |lambada_openai| 1|none | 5|perplexity |1607.2529|± |88.3065| | | |none | 5|acc | 0.0574|± | 0.0032| |openbookqa | 1|none | 5|acc | 0.1580|± | 0.0163| | | |none | 5|acc_norm | 0.2400|± | 0.0191| |piqa | 1|none | 5|acc | 0.5958|± | 0.0114| | | |none | 5|acc_norm | 0.5773|± | 0.0115| |sciq | 1|none | 5|acc | 0.5110|± | 0.0158| | | |none | 5|acc_norm | 0.5740|± | 0.0156| |wikitext | 2|none | 5|word_perplexity| 88.8633|± |N/A | | | |none | 5|byte_perplexity| 2.3143|± |N/A | | | |none | 5|bits_per_byte | 1.2106|± |N/A | |winogrande | 1|none | 5|acc | 0.5162|± | 0.0140|