bartowski commited on
Commit
141173c
·
verified ·
1 Parent(s): 80bd8cc

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +3 -1780
README.md CHANGED
@@ -1,1785 +1,6 @@
1
  ---
2
  quantized_by: bartowski
3
  pipeline_tag: text-generation
4
- language:
5
- - en
6
- tags:
7
- - language
8
- - granite
9
- - embeddings
10
- license: apache-2.0
11
- base_model: ibm-granite/granite-embedding-30m-english
12
- model-index:
13
- - name: ibm-granite/granite-embedding-30m-english
14
- results:
15
- - task:
16
- type: Retrieval
17
- dataset:
18
- name: MTEB ArguaAna
19
- type: mteb/arguana
20
- config: default
21
- split: test
22
- metrics:
23
- - type: map_at_1
24
- value: 0.31792
25
- - type: map_at_10
26
- value: 0.47599
27
- - type: map_at_100
28
- value: 0.48425
29
- - type: map_at_1000
30
- value: 0.48427
31
- - type: map_at_3
32
- value: 0.42757
33
- - type: map_at_5
34
- value: 0.45634
35
- - type: mrr_at_1
36
- value: 0.32788
37
- - type: mrr_at_10
38
- value: 0.47974
39
- - type: mrr_at_100
40
- value: 0.48801
41
- - type: mrr_at_1000
42
- value: 0.48802
43
- - type: mrr_at_3
44
- value: 0.43065
45
- - type: mrr_at_5
46
- value: 0.45999
47
- - type: ndcg_at_1
48
- value: 0.31792
49
- - type: ndcg_at_10
50
- value: 0.56356
51
- - type: ndcg_at_100
52
- value: 0.59789
53
- - type: ndcg_at_1000
54
- value: 0.59857
55
- - type: ndcg_at_3
56
- value: 0.46453
57
- - type: ndcg_at_5
58
- value: 0.51623
59
- - type: precision_at_1
60
- value: 0.31792
61
- - type: precision_at_10
62
- value: 0.08428
63
- - type: precision_at_100
64
- value: 0.00991
65
- - type: precision_at_1000
66
- value: 0.001
67
- - type: precision_at_3
68
- value: 0.19061
69
- - type: precision_at_5
70
- value: 0.1394
71
- - type: recall_at_1
72
- value: 0.31792
73
- - type: recall_at_10
74
- value: 0.84282
75
- - type: recall_at_100
76
- value: 0.99075
77
- - type: recall_at_1000
78
- value: 0.99644
79
- - type: recall_at_3
80
- value: 0.57183
81
- - type: recall_at_5
82
- value: 0.69701
83
- - task:
84
- type: Retrieval
85
- dataset:
86
- name: MTEB ClimateFEVER
87
- type: mteb/climate-fever
88
- config: default
89
- split: test
90
- metrics:
91
- - type: map_at_1
92
- value: 0.13189
93
- - type: map_at_10
94
- value: 0.21789
95
- - type: map_at_100
96
- value: 0.2358
97
- - type: map_at_1000
98
- value: 0.23772
99
- - type: map_at_3
100
- value: 0.18513
101
- - type: map_at_5
102
- value: 0.20212
103
- - type: mrr_at_1
104
- value: 0.29837
105
- - type: mrr_at_10
106
- value: 0.41376
107
- - type: mrr_at_100
108
- value: 0.42282
109
- - type: mrr_at_1000
110
- value: 0.42319
111
- - type: mrr_at_3
112
- value: 0.38284
113
- - type: mrr_at_5
114
- value: 0.40301
115
- - type: ndcg_at_1
116
- value: 0.29837
117
- - type: ndcg_at_10
118
- value: 0.30263
119
- - type: ndcg_at_100
120
- value: 0.37228
121
- - type: ndcg_at_1000
122
- value: 0.40677
123
- - type: ndcg_at_3
124
- value: 0.25392
125
- - type: ndcg_at_5
126
- value: 0.27153
127
- - type: precision_at_1
128
- value: 0.29837
129
- - type: precision_at_10
130
- value: 0.09179
131
- - type: precision_at_100
132
- value: 0.01659
133
- - type: precision_at_1000
134
- value: 0.0023
135
- - type: precision_at_3
136
- value: 0.18545
137
- - type: precision_at_5
138
- value: 0.14241
139
- - type: recall_at_1
140
- value: 0.13189
141
- - type: recall_at_10
142
- value: 0.35355
143
- - type: recall_at_100
144
- value: 0.59255
145
- - type: recall_at_1000
146
- value: 0.78637
147
- - type: recall_at_3
148
- value: 0.23255
149
- - type: recall_at_5
150
- value: 0.28446
151
- - task:
152
- type: Retrieval
153
- dataset:
154
- name: MTEB CQADupstackAndroidRetrieval
155
- type: mteb/cqadupstack-android
156
- config: default
157
- split: test
158
- metrics:
159
- - type: map_at_1
160
- value: 0.35797
161
- - type: map_at_10
162
- value: 0.47793
163
- - type: map_at_100
164
- value: 0.49422
165
- - type: map_at_1000
166
- value: 0.49546
167
- - type: map_at_3
168
- value: 0.44137
169
- - type: map_at_5
170
- value: 0.46063
171
- - type: mrr_at_1
172
- value: 0.44206
173
- - type: mrr_at_10
174
- value: 0.53808
175
- - type: mrr_at_100
176
- value: 0.5454
177
- - type: mrr_at_1000
178
- value: 0.54578
179
- - type: mrr_at_3
180
- value: 0.51431
181
- - type: mrr_at_5
182
- value: 0.5284
183
- - type: ndcg_at_1
184
- value: 0.44206
185
- - type: ndcg_at_10
186
- value: 0.54106
187
- - type: ndcg_at_100
188
- value: 0.59335
189
- - type: ndcg_at_1000
190
- value: 0.61015
191
- - type: ndcg_at_3
192
- value: 0.49365
193
- - type: ndcg_at_5
194
- value: 0.51429
195
- - type: precision_at_1
196
- value: 0.44206
197
- - type: precision_at_10
198
- value: 0.10443
199
- - type: precision_at_100
200
- value: 0.01631
201
- - type: precision_at_1000
202
- value: 0.00214
203
- - type: precision_at_3
204
- value: 0.23653
205
- - type: precision_at_5
206
- value: 0.1691
207
- - type: recall_at_1
208
- value: 0.35797
209
- - type: recall_at_10
210
- value: 0.65182
211
- - type: recall_at_100
212
- value: 0.86654
213
- - type: recall_at_1000
214
- value: 0.97131
215
- - type: recall_at_3
216
- value: 0.51224
217
- - type: recall_at_5
218
- value: 0.57219
219
- - task:
220
- type: Retrieval
221
- dataset:
222
- name: MTEB CQADupstackEnglishRetrieval
223
- type: mteb/cqadupstack-english
224
- config: default
225
- split: test
226
- metrics:
227
- - type: map_at_1
228
- value: 0.32748
229
- - type: map_at_10
230
- value: 0.44138
231
- - type: map_at_100
232
- value: 0.45565
233
- - type: map_at_1000
234
- value: 0.45698
235
- - type: map_at_3
236
- value: 0.40916
237
- - type: map_at_5
238
- value: 0.42621
239
- - type: mrr_at_1
240
- value: 0.41274
241
- - type: mrr_at_10
242
- value: 0.5046
243
- - type: mrr_at_100
244
- value: 0.5107
245
- - type: mrr_at_1000
246
- value: 0.51109
247
- - type: mrr_at_3
248
- value: 0.48238
249
- - type: mrr_at_5
250
- value: 0.49563
251
- - type: ndcg_at_1
252
- value: 0.41274
253
- - type: ndcg_at_10
254
- value: 0.50251
255
- - type: ndcg_at_100
256
- value: 0.54725
257
- - type: ndcg_at_1000
258
- value: 0.56635
259
- - type: ndcg_at_3
260
- value: 0.46023
261
- - type: ndcg_at_5
262
- value: 0.47883
263
- - type: precision_at_1
264
- value: 0.41274
265
- - type: precision_at_10
266
- value: 0.09828
267
- - type: precision_at_100
268
- value: 0.01573
269
- - type: precision_at_1000
270
- value: 0.00202
271
- - type: precision_at_3
272
- value: 0.22718
273
- - type: precision_at_5
274
- value: 0.16064
275
- - type: recall_at_1
276
- value: 0.32748
277
- - type: recall_at_10
278
- value: 0.60322
279
- - type: recall_at_100
280
- value: 0.79669
281
- - type: recall_at_1000
282
- value: 0.9173
283
- - type: recall_at_3
284
- value: 0.47523
285
- - type: recall_at_5
286
- value: 0.52957
287
- - task:
288
- type: Retrieval
289
- dataset:
290
- name: MTEB CQADupstackGamingRetrieval
291
- type: mteb/cqadupstack-gaming
292
- config: default
293
- split: test
294
- metrics:
295
- - type: map_at_1
296
- value: 0.41126
297
- - type: map_at_10
298
- value: 0.53661
299
- - type: map_at_100
300
- value: 0.54588
301
- - type: map_at_1000
302
- value: 0.54638
303
- - type: map_at_3
304
- value: 0.50389
305
- - type: map_at_5
306
- value: 0.52286
307
- - type: mrr_at_1
308
- value: 0.47147
309
- - type: mrr_at_10
310
- value: 0.5685
311
- - type: mrr_at_100
312
- value: 0.57458
313
- - type: mrr_at_1000
314
- value: 0.57487
315
- - type: mrr_at_3
316
- value: 0.54431
317
- - type: mrr_at_5
318
- value: 0.55957
319
- - type: ndcg_at_1
320
- value: 0.47147
321
- - type: ndcg_at_10
322
- value: 0.59318
323
- - type: ndcg_at_100
324
- value: 0.62972
325
- - type: ndcg_at_1000
326
- value: 0.64033
327
- - type: ndcg_at_3
328
- value: 0.53969
329
- - type: ndcg_at_5
330
- value: 0.56743
331
- - type: precision_at_1
332
- value: 0.47147
333
- - type: precision_at_10
334
- value: 0.09549
335
- - type: precision_at_100
336
- value: 0.01224
337
- - type: precision_at_1000
338
- value: 0.00135
339
- - type: precision_at_3
340
- value: 0.24159
341
- - type: precision_at_5
342
- value: 0.16577
343
- - type: recall_at_1
344
- value: 0.41126
345
- - type: recall_at_10
346
- value: 0.72691
347
- - type: recall_at_100
348
- value: 0.88692
349
- - type: recall_at_1000
350
- value: 0.96232
351
- - type: recall_at_3
352
- value: 0.58374
353
- - type: recall_at_5
354
- value: 0.65226
355
- - task:
356
- type: Retrieval
357
- dataset:
358
- name: MTEB CQADupstackGisRetrieval
359
- type: mteb/cqadupstack-gis
360
- config: default
361
- split: test
362
- metrics:
363
- - type: map_at_1
364
- value: 0.28464
365
- - type: map_at_10
366
- value: 0.3828
367
- - type: map_at_100
368
- value: 0.39277
369
- - type: map_at_1000
370
- value: 0.39355
371
- - type: map_at_3
372
- value: 0.35704
373
- - type: map_at_5
374
- value: 0.37116
375
- - type: mrr_at_1
376
- value: 0.30734
377
- - type: mrr_at_10
378
- value: 0.40422
379
- - type: mrr_at_100
380
- value: 0.41297
381
- - type: mrr_at_1000
382
- value: 0.41355
383
- - type: mrr_at_3
384
- value: 0.38136
385
- - type: mrr_at_5
386
- value: 0.39362
387
- - type: ndcg_at_1
388
- value: 0.30734
389
- - type: ndcg_at_10
390
- value: 0.43564
391
- - type: ndcg_at_100
392
- value: 0.48419
393
- - type: ndcg_at_1000
394
- value: 0.50404
395
- - type: ndcg_at_3
396
- value: 0.38672
397
- - type: ndcg_at_5
398
- value: 0.40954
399
- - type: precision_at_1
400
- value: 0.30734
401
- - type: precision_at_10
402
- value: 0.06633
403
- - type: precision_at_100
404
- value: 0.00956
405
- - type: precision_at_1000
406
- value: 0.00116
407
- - type: precision_at_3
408
- value: 0.16497
409
- - type: precision_at_5
410
- value: 0.11254
411
- - type: recall_at_1
412
- value: 0.28464
413
- - type: recall_at_10
414
- value: 0.57621
415
- - type: recall_at_100
416
- value: 0.7966
417
- - type: recall_at_1000
418
- value: 0.94633
419
- - type: recall_at_3
420
- value: 0.44588
421
- - type: recall_at_5
422
- value: 0.50031
423
- - task:
424
- type: Retrieval
425
- dataset:
426
- name: MTEB CQADupstackMathematicaRetrieval
427
- type: mteb/cqadupstack-mathematica
428
- config: default
429
- split: test
430
- metrics:
431
- - type: map_at_1
432
- value: 0.18119
433
- - type: map_at_10
434
- value: 0.27055
435
- - type: map_at_100
436
- value: 0.28461
437
- - type: map_at_1000
438
- value: 0.28577
439
- - type: map_at_3
440
- value: 0.24341
441
- - type: map_at_5
442
- value: 0.25861
443
- - type: mrr_at_1
444
- value: 0.22886
445
- - type: mrr_at_10
446
- value: 0.32234
447
- - type: mrr_at_100
448
- value: 0.3328
449
- - type: mrr_at_1000
450
- value: 0.3334
451
- - type: mrr_at_3
452
- value: 0.29664
453
- - type: mrr_at_5
454
- value: 0.31107
455
- - type: ndcg_at_1
456
- value: 0.22886
457
- - type: ndcg_at_10
458
- value: 0.32749
459
- - type: ndcg_at_100
460
- value: 0.39095
461
- - type: ndcg_at_1000
462
- value: 0.41656
463
- - type: ndcg_at_3
464
- value: 0.27864
465
- - type: ndcg_at_5
466
- value: 0.30177
467
- - type: precision_at_1
468
- value: 0.22886
469
- - type: precision_at_10
470
- value: 0.06169
471
- - type: precision_at_100
472
- value: 0.0107
473
- - type: precision_at_1000
474
- value: 0.00143
475
- - type: precision_at_3
476
- value: 0.13682
477
- - type: precision_at_5
478
- value: 0.0995
479
- - type: recall_at_1
480
- value: 0.18119
481
- - type: recall_at_10
482
- value: 0.44983
483
- - type: recall_at_100
484
- value: 0.72396
485
- - type: recall_at_1000
486
- value: 0.90223
487
- - type: recall_at_3
488
- value: 0.31633
489
- - type: recall_at_5
490
- value: 0.37532
491
- - task:
492
- type: Retrieval
493
- dataset:
494
- name: MTEB CQADupstackPhysicsRetrieval
495
- type: mteb/cqadupstack-physics
496
- config: default
497
- split: test
498
- metrics:
499
- - type: map_at_1
500
- value: 0.30517
501
- - type: map_at_10
502
- value: 0.42031
503
- - type: map_at_100
504
- value: 0.43415
505
- - type: map_at_1000
506
- value: 0.43525
507
- - type: map_at_3
508
- value: 0.38443
509
- - type: map_at_5
510
- value: 0.40685
511
- - type: mrr_at_1
512
- value: 0.38114
513
- - type: mrr_at_10
514
- value: 0.47783
515
- - type: mrr_at_100
516
- value: 0.48647
517
- - type: mrr_at_1000
518
- value: 0.48688
519
- - type: mrr_at_3
520
- value: 0.45172
521
- - type: mrr_at_5
522
- value: 0.46817
523
- - type: ndcg_at_1
524
- value: 0.38114
525
- - type: ndcg_at_10
526
- value: 0.4834
527
- - type: ndcg_at_100
528
- value: 0.53861
529
- - type: ndcg_at_1000
530
- value: 0.55701
531
- - type: ndcg_at_3
532
- value: 0.42986
533
- - type: ndcg_at_5
534
- value: 0.45893
535
- - type: precision_at_1
536
- value: 0.38114
537
- - type: precision_at_10
538
- value: 0.08893
539
- - type: precision_at_100
540
- value: 0.01375
541
- - type: precision_at_1000
542
- value: 0.00172
543
- - type: precision_at_3
544
- value: 0.20821
545
- - type: precision_at_5
546
- value: 0.15034
547
- - type: recall_at_1
548
- value: 0.30517
549
- - type: recall_at_10
550
- value: 0.61332
551
- - type: recall_at_100
552
- value: 0.84051
553
- - type: recall_at_1000
554
- value: 0.95826
555
- - type: recall_at_3
556
- value: 0.46015
557
- - type: recall_at_5
558
- value: 0.53801
559
- - task:
560
- type: Retrieval
561
- dataset:
562
- name: MTEB CQADupstackProgrammersRetrieval
563
- type: mteb/cqadupstack-programmers
564
- config: default
565
- split: test
566
- metrics:
567
- - type: map_at_1
568
- value: 0.27396
569
- - type: map_at_10
570
- value: 0.38043
571
- - type: map_at_100
572
- value: 0.39341
573
- - type: map_at_1000
574
- value: 0.39454
575
- - type: map_at_3
576
- value: 0.34783
577
- - type: map_at_5
578
- value: 0.3663
579
- - type: mrr_at_1
580
- value: 0.34247
581
- - type: mrr_at_10
582
- value: 0.43681
583
- - type: mrr_at_100
584
- value: 0.4451
585
- - type: mrr_at_1000
586
- value: 0.44569
587
- - type: mrr_at_3
588
- value: 0.41172
589
- - type: mrr_at_5
590
- value: 0.42702
591
- - type: ndcg_at_1
592
- value: 0.34247
593
- - type: ndcg_at_10
594
- value: 0.44065
595
- - type: ndcg_at_100
596
- value: 0.49434
597
- - type: ndcg_at_1000
598
- value: 0.51682
599
- - type: ndcg_at_3
600
- value: 0.38976
601
- - type: ndcg_at_5
602
- value: 0.41332
603
- - type: precision_at_1
604
- value: 0.34247
605
- - type: precision_at_10
606
- value: 0.08059
607
- - type: precision_at_100
608
- value: 0.01258
609
- - type: precision_at_1000
610
- value: 0.00162
611
- - type: precision_at_3
612
- value: 0.1876
613
- - type: precision_at_5
614
- value: 0.13333
615
- - type: recall_at_1
616
- value: 0.27396
617
- - type: recall_at_10
618
- value: 0.56481
619
- - type: recall_at_100
620
- value: 0.79012
621
- - type: recall_at_1000
622
- value: 0.94182
623
- - type: recall_at_3
624
- value: 0.41785
625
- - type: recall_at_5
626
- value: 0.48303
627
- - task:
628
- type: Retrieval
629
- dataset:
630
- name: MTEB CQADupstackStatsRetrieval
631
- type: mteb/cqadupstack-stats
632
- config: default
633
- split: test
634
- metrics:
635
- - type: map_at_1
636
- value: 0.25728
637
- - type: map_at_10
638
- value: 0.33903
639
- - type: map_at_100
640
- value: 0.34853
641
- - type: map_at_1000
642
- value: 0.34944
643
- - type: map_at_3
644
- value: 0.31268
645
- - type: map_at_5
646
- value: 0.32596
647
- - type: mrr_at_1
648
- value: 0.29141
649
- - type: mrr_at_10
650
- value: 0.36739
651
- - type: mrr_at_100
652
- value: 0.37545
653
- - type: mrr_at_1000
654
- value: 0.37608
655
- - type: mrr_at_3
656
- value: 0.34407
657
- - type: mrr_at_5
658
- value: 0.3568
659
- - type: ndcg_at_1
660
- value: 0.29141
661
- - type: ndcg_at_10
662
- value: 0.38596
663
- - type: ndcg_at_100
664
- value: 0.43375
665
- - type: ndcg_at_1000
666
- value: 0.45562
667
- - type: ndcg_at_3
668
- value: 0.33861
669
- - type: ndcg_at_5
670
- value: 0.35887
671
- - type: precision_at_1
672
- value: 0.29141
673
- - type: precision_at_10
674
- value: 0.06334
675
- - type: precision_at_100
676
- value: 0.00952
677
- - type: precision_at_1000
678
- value: 0.00121
679
- - type: precision_at_3
680
- value: 0.14826
681
- - type: precision_at_5
682
- value: 0.10429
683
- - type: recall_at_1
684
- value: 0.25728
685
- - type: recall_at_10
686
- value: 0.50121
687
- - type: recall_at_100
688
- value: 0.72382
689
- - type: recall_at_1000
690
- value: 0.88306
691
- - type: recall_at_3
692
- value: 0.36638
693
- - type: recall_at_5
694
- value: 0.41689
695
- - task:
696
- type: Retrieval
697
- dataset:
698
- name: MTEB CQADupstackTexRetrieval
699
- type: mteb/cqadupstack-tex
700
- config: default
701
- split: test
702
- metrics:
703
- - type: map_at_1
704
- value: 0.19911
705
- - type: map_at_10
706
- value: 0.2856
707
- - type: map_at_100
708
- value: 0.29785
709
- - type: map_at_1000
710
- value: 0.29911
711
- - type: map_at_3
712
- value: 0.25875
713
- - type: map_at_5
714
- value: 0.2741
715
- - type: mrr_at_1
716
- value: 0.24054
717
- - type: mrr_at_10
718
- value: 0.32483
719
- - type: mrr_at_100
720
- value: 0.33464
721
- - type: mrr_at_1000
722
- value: 0.33534
723
- - type: mrr_at_3
724
- value: 0.30162
725
- - type: mrr_at_5
726
- value: 0.31506
727
- - type: ndcg_at_1
728
- value: 0.24054
729
- - type: ndcg_at_10
730
- value: 0.33723
731
- - type: ndcg_at_100
732
- value: 0.39362
733
- - type: ndcg_at_1000
734
- value: 0.42065
735
- - type: ndcg_at_3
736
- value: 0.29116
737
- - type: ndcg_at_5
738
- value: 0.31299
739
- - type: precision_at_1
740
- value: 0.24054
741
- - type: precision_at_10
742
- value: 0.06194
743
- - type: precision_at_100
744
- value: 0.01058
745
- - type: precision_at_1000
746
- value: 0.00148
747
- - type: precision_at_3
748
- value: 0.13914
749
- - type: precision_at_5
750
- value: 0.10076
751
- - type: recall_at_1
752
- value: 0.19911
753
- - type: recall_at_10
754
- value: 0.45183
755
- - type: recall_at_100
756
- value: 0.7025
757
- - type: recall_at_1000
758
- value: 0.89222
759
- - type: recall_at_3
760
- value: 0.32195
761
- - type: recall_at_5
762
- value: 0.37852
763
- - task:
764
- type: Retrieval
765
- dataset:
766
- name: MTEB CQADupstackUnixRetrieval
767
- type: mteb/cqadupstack-unix
768
- config: default
769
- split: test
770
- metrics:
771
- - type: map_at_1
772
- value: 0.29819
773
- - type: map_at_10
774
- value: 0.40073
775
- - type: map_at_100
776
- value: 0.41289
777
- - type: map_at_1000
778
- value: 0.41375
779
- - type: map_at_3
780
- value: 0.36572
781
- - type: map_at_5
782
- value: 0.38386
783
- - type: mrr_at_1
784
- value: 0.35168
785
- - type: mrr_at_10
786
- value: 0.44381
787
- - type: mrr_at_100
788
- value: 0.45191
789
- - type: mrr_at_1000
790
- value: 0.45234
791
- - type: mrr_at_3
792
- value: 0.41402
793
- - type: mrr_at_5
794
- value: 0.43039
795
- - type: ndcg_at_1
796
- value: 0.35168
797
- - type: ndcg_at_10
798
- value: 0.46071
799
- - type: ndcg_at_100
800
- value: 0.51351
801
- - type: ndcg_at_1000
802
- value: 0.5317
803
- - type: ndcg_at_3
804
- value: 0.39972
805
- - type: ndcg_at_5
806
- value: 0.42586
807
- - type: precision_at_1
808
- value: 0.35168
809
- - type: precision_at_10
810
- value: 0.07985
811
- - type: precision_at_100
812
- value: 0.01185
813
- - type: precision_at_1000
814
- value: 0.00144
815
- - type: precision_at_3
816
- value: 0.18221
817
- - type: precision_at_5
818
- value: 0.12892
819
- - type: recall_at_1
820
- value: 0.29819
821
- - type: recall_at_10
822
- value: 0.60075
823
- - type: recall_at_100
824
- value: 0.82771
825
- - type: recall_at_1000
826
- value: 0.95219
827
- - type: recall_at_3
828
- value: 0.43245
829
- - type: recall_at_5
830
- value: 0.49931
831
- - task:
832
- type: Retrieval
833
- dataset:
834
- name: MTEB CQADupstackWebmastersRetrieval
835
- type: mteb/cqadupstack-webmasters
836
- config: default
837
- split: test
838
- metrics:
839
- - type: map_at_1
840
- value: 0.28409
841
- - type: map_at_10
842
- value: 0.37621
843
- - type: map_at_100
844
- value: 0.39233
845
- - type: map_at_1000
846
- value: 0.39471
847
- - type: map_at_3
848
- value: 0.34337
849
- - type: map_at_5
850
- value: 0.35985
851
- - type: mrr_at_1
852
- value: 0.33794
853
- - type: mrr_at_10
854
- value: 0.42349
855
- - type: mrr_at_100
856
- value: 0.43196
857
- - type: mrr_at_1000
858
- value: 0.43237
859
- - type: mrr_at_3
860
- value: 0.39526
861
- - type: mrr_at_5
862
- value: 0.41087
863
- - type: ndcg_at_1
864
- value: 0.33794
865
- - type: ndcg_at_10
866
- value: 0.43832
867
- - type: ndcg_at_100
868
- value: 0.49514
869
- - type: ndcg_at_1000
870
- value: 0.51742
871
- - type: ndcg_at_3
872
- value: 0.38442
873
- - type: ndcg_at_5
874
- value: 0.40737
875
- - type: precision_at_1
876
- value: 0.33794
877
- - type: precision_at_10
878
- value: 0.08597
879
- - type: precision_at_100
880
- value: 0.01652
881
- - type: precision_at_1000
882
- value: 0.00251
883
- - type: precision_at_3
884
- value: 0.17787
885
- - type: precision_at_5
886
- value: 0.13241
887
- - type: recall_at_1
888
- value: 0.28409
889
- - type: recall_at_10
890
- value: 0.55388
891
- - type: recall_at_100
892
- value: 0.81517
893
- - type: recall_at_1000
894
- value: 0.95038
895
- - type: recall_at_3
896
- value: 0.40133
897
- - type: recall_at_5
898
- value: 0.45913
899
- - task:
900
- type: Retrieval
901
- dataset:
902
- name: MTEB CQADupstackWordpressRetrieval
903
- type: mteb/cqadupstack-wordpress
904
- config: default
905
- split: test
906
- metrics:
907
- - type: map_at_1
908
- value: 0.24067
909
- - type: map_at_10
910
- value: 0.32184
911
- - type: map_at_100
912
- value: 0.33357
913
- - type: map_at_1000
914
- value: 0.33458
915
- - type: map_at_3
916
- value: 0.29492
917
- - type: map_at_5
918
- value: 0.3111
919
- - type: mrr_at_1
920
- value: 0.26248
921
- - type: mrr_at_10
922
- value: 0.34149
923
- - type: mrr_at_100
924
- value: 0.35189
925
- - type: mrr_at_1000
926
- value: 0.35251
927
- - type: mrr_at_3
928
- value: 0.31639
929
- - type: mrr_at_5
930
- value: 0.33182
931
- - type: ndcg_at_1
932
- value: 0.26248
933
- - type: ndcg_at_10
934
- value: 0.36889
935
- - type: ndcg_at_100
936
- value: 0.42426
937
- - type: ndcg_at_1000
938
- value: 0.44745
939
- - type: ndcg_at_3
940
- value: 0.31799
941
- - type: ndcg_at_5
942
- value: 0.34563
943
- - type: precision_at_1
944
- value: 0.26248
945
- - type: precision_at_10
946
- value: 0.05712
947
- - type: precision_at_100
948
- value: 0.00915
949
- - type: precision_at_1000
950
- value: 0.00123
951
- - type: precision_at_3
952
- value: 0.13309
953
- - type: precision_at_5
954
- value: 0.09649
955
- - type: recall_at_1
956
- value: 0.24067
957
- - type: recall_at_10
958
- value: 0.49344
959
- - type: recall_at_100
960
- value: 0.7412
961
- - type: recall_at_1000
962
- value: 0.91276
963
- - type: recall_at_3
964
- value: 0.36272
965
- - type: recall_at_5
966
- value: 0.4277
967
- - task:
968
- type: Retrieval
969
- dataset:
970
- name: MTEB DBPedia
971
- type: mteb/dbpedia
972
- config: default
973
- split: test
974
- metrics:
975
- - type: map_at_1
976
- value: 0.08651
977
- - type: map_at_10
978
- value: 0.17628
979
- - type: map_at_100
980
- value: 0.23354
981
- - type: map_at_1000
982
- value: 0.24827
983
- - type: map_at_3
984
- value: 0.1351
985
- - type: map_at_5
986
- value: 0.15468
987
- - type: mrr_at_1
988
- value: 0.645
989
- - type: mrr_at_10
990
- value: 0.71989
991
- - type: mrr_at_100
992
- value: 0.72332
993
- - type: mrr_at_1000
994
- value: 0.72346
995
- - type: mrr_at_3
996
- value: 0.7025
997
- - type: mrr_at_5
998
- value: 0.71275
999
- - type: ndcg_at_1
1000
- value: 0.51375
1001
- - type: ndcg_at_10
1002
- value: 0.3596
1003
- - type: ndcg_at_100
1004
- value: 0.39878
1005
- - type: ndcg_at_1000
1006
- value: 0.47931
1007
- - type: ndcg_at_3
1008
- value: 0.41275
1009
- - type: ndcg_at_5
1010
- value: 0.38297
1011
- - type: precision_at_1
1012
- value: 0.645
1013
- - type: precision_at_10
1014
- value: 0.2745
1015
- - type: precision_at_100
1016
- value: 0.08405
1017
- - type: precision_at_1000
1018
- value: 0.01923
1019
- - type: precision_at_3
1020
- value: 0.44417
1021
- - type: precision_at_5
1022
- value: 0.366
1023
- - type: recall_at_1
1024
- value: 0.08651
1025
- - type: recall_at_10
1026
- value: 0.22416
1027
- - type: recall_at_100
1028
- value: 0.46381
1029
- - type: recall_at_1000
1030
- value: 0.71557
1031
- - type: recall_at_3
1032
- value: 0.14847
1033
- - type: recall_at_5
1034
- value: 0.1804
1035
- - task:
1036
- type: Retrieval
1037
- dataset:
1038
- name: MTEB FEVER
1039
- type: mteb/fever
1040
- config: default
1041
- split: test
1042
- metrics:
1043
- - type: map_at_1
1044
- value: 0.73211
1045
- - type: map_at_10
1046
- value: 0.81463
1047
- - type: map_at_100
1048
- value: 0.81622
1049
- - type: map_at_1000
1050
- value: 0.81634
1051
- - type: map_at_3
1052
- value: 0.805
1053
- - type: map_at_5
1054
- value: 0.81134
1055
- - type: mrr_at_1
1056
- value: 0.79088
1057
- - type: mrr_at_10
1058
- value: 0.86943
1059
- - type: mrr_at_100
1060
- value: 0.87017
1061
- - type: mrr_at_1000
1062
- value: 0.87018
1063
- - type: mrr_at_3
1064
- value: 0.86154
1065
- - type: mrr_at_5
1066
- value: 0.867
1067
- - type: ndcg_at_1
1068
- value: 0.79088
1069
- - type: ndcg_at_10
1070
- value: 0.85528
1071
- - type: ndcg_at_100
1072
- value: 0.86134
1073
- - type: ndcg_at_1000
1074
- value: 0.86367
1075
- - type: ndcg_at_3
1076
- value: 0.83943
1077
- - type: ndcg_at_5
1078
- value: 0.84878
1079
- - type: precision_at_1
1080
- value: 0.79088
1081
- - type: precision_at_10
1082
- value: 0.10132
1083
- - type: precision_at_100
1084
- value: 0.01055
1085
- - type: precision_at_1000
1086
- value: 0.00109
1087
- - type: precision_at_3
1088
- value: 0.31963
1089
- - type: precision_at_5
1090
- value: 0.19769
1091
- - type: recall_at_1
1092
- value: 0.73211
1093
- - type: recall_at_10
1094
- value: 0.92797
1095
- - type: recall_at_100
1096
- value: 0.95263
1097
- - type: recall_at_1000
1098
- value: 0.96738
1099
- - type: recall_at_3
1100
- value: 0.88328
1101
- - type: recall_at_5
1102
- value: 0.90821
1103
- - task:
1104
- type: Retrieval
1105
- dataset:
1106
- name: MTEB FiQA2018
1107
- type: mteb/fiqa
1108
- config: default
1109
- split: test
1110
- metrics:
1111
- - type: map_at_1
1112
- value: 0.18311
1113
- - type: map_at_10
1114
- value: 0.29201
1115
- - type: map_at_100
1116
- value: 0.3093
1117
- - type: map_at_1000
1118
- value: 0.31116
1119
- - type: map_at_3
1120
- value: 0.24778
1121
- - type: map_at_5
1122
- value: 0.27453
1123
- - type: mrr_at_1
1124
- value: 0.35494
1125
- - type: mrr_at_10
1126
- value: 0.44489
1127
- - type: mrr_at_100
1128
- value: 0.4532
1129
- - type: mrr_at_1000
1130
- value: 0.45369
1131
- - type: mrr_at_3
1132
- value: 0.41667
1133
- - type: mrr_at_5
1134
- value: 0.43418
1135
- - type: ndcg_at_1
1136
- value: 0.35494
1137
- - type: ndcg_at_10
1138
- value: 0.36868
1139
- - type: ndcg_at_100
1140
- value: 0.43463
1141
- - type: ndcg_at_1000
1142
- value: 0.46766
1143
- - type: ndcg_at_3
1144
- value: 0.32305
1145
- - type: ndcg_at_5
1146
- value: 0.34332
1147
- - type: precision_at_1
1148
- value: 0.35494
1149
- - type: precision_at_10
1150
- value: 0.10324
1151
- - type: precision_at_100
1152
- value: 0.01707
1153
- - type: precision_at_1000
1154
- value: 0.00229
1155
- - type: precision_at_3
1156
- value: 0.21142
1157
- - type: precision_at_5
1158
- value: 0.16327
1159
- - type: recall_at_1
1160
- value: 0.18311
1161
- - type: recall_at_10
1162
- value: 0.43881
1163
- - type: recall_at_100
1164
- value: 0.68593
1165
- - type: recall_at_1000
1166
- value: 0.8855
1167
- - type: recall_at_3
1168
- value: 0.28824
1169
- - type: recall_at_5
1170
- value: 0.36178
1171
- - task:
1172
- type: Retrieval
1173
- dataset:
1174
- name: MTEB HotpotQA
1175
- type: mteb/hotpotqa
1176
- config: default
1177
- split: test
1178
- metrics:
1179
- - type: map_at_1
1180
- value: 0.36766
1181
- - type: map_at_10
1182
- value: 0.53639
1183
- - type: map_at_100
1184
- value: 0.54532
1185
- - type: map_at_1000
1186
- value: 0.54608
1187
- - type: map_at_3
1188
- value: 0.50427
1189
- - type: map_at_5
1190
- value: 0.5245
1191
- - type: mrr_at_1
1192
- value: 0.73531
1193
- - type: mrr_at_10
1194
- value: 0.80104
1195
- - type: mrr_at_100
1196
- value: 0.80341
1197
- - type: mrr_at_1000
1198
- value: 0.80351
1199
- - type: mrr_at_3
1200
- value: 0.78949
1201
- - type: mrr_at_5
1202
- value: 0.79729
1203
- - type: ndcg_at_1
1204
- value: 0.73531
1205
- - type: ndcg_at_10
1206
- value: 0.62918
1207
- - type: ndcg_at_100
1208
- value: 0.66056
1209
- - type: ndcg_at_1000
1210
- value: 0.67554
1211
- - type: ndcg_at_3
1212
- value: 0.58247
1213
- - type: ndcg_at_5
1214
- value: 0.60905
1215
- - type: precision_at_1
1216
- value: 0.73531
1217
- - type: precision_at_10
1218
- value: 0.1302
1219
- - type: precision_at_100
1220
- value: 0.01546
1221
- - type: precision_at_1000
1222
- value: 0.00175
1223
- - type: precision_at_3
1224
- value: 0.36556
1225
- - type: precision_at_5
1226
- value: 0.24032
1227
- - type: recall_at_1
1228
- value: 0.36766
1229
- - type: recall_at_10
1230
- value: 0.65098
1231
- - type: recall_at_100
1232
- value: 0.77306
1233
- - type: recall_at_1000
1234
- value: 0.87252
1235
- - type: recall_at_3
1236
- value: 0.54835
1237
- - type: recall_at_5
1238
- value: 0.60081
1239
- - task:
1240
- type: Retrieval
1241
- dataset:
1242
- name: MTEB MSMARCO
1243
- type: mteb/msmarco
1244
- config: default
1245
- split: dev
1246
- metrics:
1247
- - type: map_at_1
1248
- value: 0.14654
1249
- - type: map_at_10
1250
- value: 0.2472
1251
- - type: map_at_100
1252
- value: 0.25994
1253
- - type: map_at_1000
1254
- value: 0.26067
1255
- - type: map_at_3
1256
- value: 0.21234
1257
- - type: map_at_5
1258
- value: 0.2319
1259
- - type: mrr_at_1
1260
- value: 0.15086
1261
- - type: mrr_at_10
1262
- value: 0.25184
1263
- - type: mrr_at_100
1264
- value: 0.26422
1265
- - type: mrr_at_1000
1266
- value: 0.26489
1267
- - type: mrr_at_3
1268
- value: 0.21731
1269
- - type: mrr_at_5
1270
- value: 0.23674
1271
- - type: ndcg_at_1
1272
- value: 0.15086
1273
- - type: ndcg_at_10
1274
- value: 0.30711
1275
- - type: ndcg_at_100
1276
- value: 0.37221
1277
- - type: ndcg_at_1000
1278
- value: 0.39133
1279
- - type: ndcg_at_3
1280
- value: 0.23567
1281
- - type: ndcg_at_5
1282
- value: 0.27066
1283
- - type: precision_at_1
1284
- value: 0.15086
1285
- - type: precision_at_10
1286
- value: 0.05132
1287
- - type: precision_at_100
1288
- value: 0.00845
1289
- - type: precision_at_1000
1290
- value: 0.00101
1291
- - type: precision_at_3
1292
- value: 0.10277
1293
- - type: precision_at_5
1294
- value: 0.07923
1295
- - type: recall_at_1
1296
- value: 0.14654
1297
- - type: recall_at_10
1298
- value: 0.49341
1299
- - type: recall_at_100
1300
- value: 0.80224
1301
- - type: recall_at_1000
1302
- value: 0.95037
1303
- - type: recall_at_3
1304
- value: 0.29862
1305
- - type: recall_at_5
1306
- value: 0.38274
1307
- - task:
1308
- type: Retrieval
1309
- dataset:
1310
- name: MTEB NFCorpus
1311
- type: mteb/nfcorpus
1312
- config: default
1313
- split: test
1314
- metrics:
1315
- - type: map_at_1
1316
- value: 0.05452
1317
- - type: map_at_10
1318
- value: 0.12758
1319
- - type: map_at_100
1320
- value: 0.1593
1321
- - type: map_at_1000
1322
- value: 0.17422
1323
- - type: map_at_3
1324
- value: 0.0945
1325
- - type: map_at_5
1326
- value: 0.1092
1327
- - type: mrr_at_1
1328
- value: 0.43963
1329
- - type: mrr_at_10
1330
- value: 0.53237
1331
- - type: mrr_at_100
1332
- value: 0.53777
1333
- - type: mrr_at_1000
1334
- value: 0.53822
1335
- - type: mrr_at_3
1336
- value: 0.51445
1337
- - type: mrr_at_5
1338
- value: 0.52466
1339
- - type: ndcg_at_1
1340
- value: 0.41486
1341
- - type: ndcg_at_10
1342
- value: 0.33737
1343
- - type: ndcg_at_100
1344
- value: 0.30886
1345
- - type: ndcg_at_1000
1346
- value: 0.40018
1347
- - type: ndcg_at_3
1348
- value: 0.39324
1349
- - type: ndcg_at_5
1350
- value: 0.36949
1351
- - type: precision_at_1
1352
- value: 0.43344
1353
- - type: precision_at_10
1354
- value: 0.24799
1355
- - type: precision_at_100
1356
- value: 0.07895
1357
- - type: precision_at_1000
1358
- value: 0.02091
1359
- - type: precision_at_3
1360
- value: 0.37152
1361
- - type: precision_at_5
1362
- value: 0.31703
1363
- - type: recall_at_1
1364
- value: 0.05452
1365
- - type: recall_at_10
1366
- value: 0.1712
1367
- - type: recall_at_100
1368
- value: 0.30719
1369
- - type: recall_at_1000
1370
- value: 0.62766
1371
- - type: recall_at_3
1372
- value: 0.10733
1373
- - type: recall_at_5
1374
- value: 0.13553
1375
- - task:
1376
- type: Retrieval
1377
- dataset:
1378
- name: MTEB NQ
1379
- type: mteb/nq
1380
- config: default
1381
- split: test
1382
- metrics:
1383
- - type: map_at_1
1384
- value: 0.29022
1385
- - type: map_at_10
1386
- value: 0.4373
1387
- - type: map_at_100
1388
- value: 0.44849
1389
- - type: map_at_1000
1390
- value: 0.44877
1391
- - type: map_at_3
1392
- value: 0.39045
1393
- - type: map_at_5
1394
- value: 0.4186
1395
- - type: mrr_at_1
1396
- value: 0.32793
1397
- - type: mrr_at_10
1398
- value: 0.46243
1399
- - type: mrr_at_100
1400
- value: 0.47083
1401
- - type: mrr_at_1000
1402
- value: 0.47101
1403
- - type: mrr_at_3
1404
- value: 0.42261
1405
- - type: mrr_at_5
1406
- value: 0.44775
1407
- - type: ndcg_at_1
1408
- value: 0.32793
1409
- - type: ndcg_at_10
1410
- value: 0.51631
1411
- - type: ndcg_at_100
1412
- value: 0.56287
1413
- - type: ndcg_at_1000
1414
- value: 0.56949
1415
- - type: ndcg_at_3
1416
- value: 0.42782
1417
- - type: ndcg_at_5
1418
- value: 0.47554
1419
- - type: precision_at_1
1420
- value: 0.32793
1421
- - type: precision_at_10
1422
- value: 0.08737
1423
- - type: precision_at_100
1424
- value: 0.01134
1425
- - type: precision_at_1000
1426
- value: 0.0012
1427
- - type: precision_at_3
1428
- value: 0.19583
1429
- - type: precision_at_5
1430
- value: 0.14484
1431
- - type: recall_at_1
1432
- value: 0.29022
1433
- - type: recall_at_10
1434
- value: 0.73325
1435
- - type: recall_at_100
1436
- value: 0.93455
1437
- - type: recall_at_1000
1438
- value: 0.98414
1439
- - type: recall_at_3
1440
- value: 0.50406
1441
- - type: recall_at_5
1442
- value: 0.6145
1443
- - task:
1444
- type: Retrieval
1445
- dataset:
1446
- name: MTEB QuoraRetrieval
1447
- type: mteb/quora
1448
- config: default
1449
- split: test
1450
- metrics:
1451
- - type: map_at_1
1452
- value: 0.68941
1453
- - type: map_at_10
1454
- value: 0.82641
1455
- - type: map_at_100
1456
- value: 0.83317
1457
- - type: map_at_1000
1458
- value: 0.83337
1459
- - type: map_at_3
1460
- value: 0.79604
1461
- - type: map_at_5
1462
- value: 0.81525
1463
- - type: mrr_at_1
1464
- value: 0.7935
1465
- - type: mrr_at_10
1466
- value: 0.85969
1467
- - type: mrr_at_100
1468
- value: 0.86094
1469
- - type: mrr_at_1000
1470
- value: 0.86095
1471
- - type: mrr_at_3
1472
- value: 0.84852
1473
- - type: mrr_at_5
1474
- value: 0.85627
1475
- - type: ndcg_at_1
1476
- value: 0.7936
1477
- - type: ndcg_at_10
1478
- value: 0.86687
1479
- - type: ndcg_at_100
1480
- value: 0.88094
1481
- - type: ndcg_at_1000
1482
- value: 0.88243
1483
- - type: ndcg_at_3
1484
- value: 0.83538
1485
- - type: ndcg_at_5
1486
- value: 0.85308
1487
- - type: precision_at_1
1488
- value: 0.7936
1489
- - type: precision_at_10
1490
- value: 0.13145
1491
- - type: precision_at_100
1492
- value: 0.01517
1493
- - type: precision_at_1000
1494
- value: 0.00156
1495
- - type: precision_at_3
1496
- value: 0.36353
1497
- - type: precision_at_5
1498
- value: 0.24044
1499
- - type: recall_at_1
1500
- value: 0.68941
1501
- - type: recall_at_10
1502
- value: 0.94407
1503
- - type: recall_at_100
1504
- value: 0.99226
1505
- - type: recall_at_1000
1506
- value: 0.99958
1507
- - type: recall_at_3
1508
- value: 0.85502
1509
- - type: recall_at_5
1510
- value: 0.90372
1511
- - task:
1512
- type: Retrieval
1513
- dataset:
1514
- name: MTEB SCIDOCS
1515
- type: mteb/scidocs
1516
- config: default
1517
- split: test
1518
- metrics:
1519
- - type: map_at_1
1520
- value: 0.04988
1521
- - type: map_at_10
1522
- value: 0.13553
1523
- - type: map_at_100
1524
- value: 0.16136
1525
- - type: map_at_1000
1526
- value: 0.16512
1527
- - type: map_at_3
1528
- value: 0.09439
1529
- - type: map_at_5
1530
- value: 0.1146
1531
- - type: mrr_at_1
1532
- value: 0.246
1533
- - type: mrr_at_10
1534
- value: 0.36792
1535
- - type: mrr_at_100
1536
- value: 0.37973
1537
- - type: mrr_at_1000
1538
- value: 0.38011
1539
- - type: mrr_at_3
1540
- value: 0.33117
1541
- - type: mrr_at_5
1542
- value: 0.35172
1543
- - type: ndcg_at_1
1544
- value: 0.246
1545
- - type: ndcg_at_10
1546
- value: 0.22542
1547
- - type: ndcg_at_100
1548
- value: 0.32326
1549
- - type: ndcg_at_1000
1550
- value: 0.3828
1551
- - type: ndcg_at_3
1552
- value: 0.20896
1553
- - type: ndcg_at_5
1554
- value: 0.18497
1555
- - type: precision_at_1
1556
- value: 0.246
1557
- - type: precision_at_10
1558
- value: 0.1194
1559
- - type: precision_at_100
1560
- value: 0.02616
1561
- - type: precision_at_1000
1562
- value: 0.00404
1563
- - type: precision_at_3
1564
- value: 0.198
1565
- - type: precision_at_5
1566
- value: 0.1654
1567
- - type: recall_at_1
1568
- value: 0.04988
1569
- - type: recall_at_10
1570
- value: 0.24212
1571
- - type: recall_at_100
1572
- value: 0.53105
1573
- - type: recall_at_1000
1574
- value: 0.82022
1575
- - type: recall_at_3
1576
- value: 0.12047
1577
- - type: recall_at_5
1578
- value: 0.16777
1579
- - task:
1580
- type: Retrieval
1581
- dataset:
1582
- name: MTEB SciFact
1583
- type: mteb/scifact
1584
- config: default
1585
- split: test
1586
- metrics:
1587
- - type: map_at_1
1588
- value: 0.56578
1589
- - type: map_at_10
1590
- value: 0.66725
1591
- - type: map_at_100
1592
- value: 0.67379
1593
- - type: map_at_1000
1594
- value: 0.674
1595
- - type: map_at_3
1596
- value: 0.63416
1597
- - type: map_at_5
1598
- value: 0.6577
1599
- - type: mrr_at_1
1600
- value: 0.59333
1601
- - type: mrr_at_10
1602
- value: 0.67533
1603
- - type: mrr_at_100
1604
- value: 0.68062
1605
- - type: mrr_at_1000
1606
- value: 0.68082
1607
- - type: mrr_at_3
1608
- value: 0.64944
1609
- - type: mrr_at_5
1610
- value: 0.66928
1611
- - type: ndcg_at_1
1612
- value: 0.59333
1613
- - type: ndcg_at_10
1614
- value: 0.7127
1615
- - type: ndcg_at_100
1616
- value: 0.73889
1617
- - type: ndcg_at_1000
1618
- value: 0.7441
1619
- - type: ndcg_at_3
1620
- value: 0.65793
1621
- - type: ndcg_at_5
1622
- value: 0.69429
1623
- - type: precision_at_1
1624
- value: 0.59333
1625
- - type: precision_at_10
1626
- value: 0.096
1627
- - type: precision_at_100
1628
- value: 0.01087
1629
- - type: precision_at_1000
1630
- value: 0.00113
1631
- - type: precision_at_3
1632
- value: 0.25556
1633
- - type: precision_at_5
1634
- value: 0.17667
1635
- - type: recall_at_1
1636
- value: 0.56578
1637
- - type: recall_at_10
1638
- value: 0.842
1639
- - type: recall_at_100
1640
- value: 0.95667
1641
- - type: recall_at_1000
1642
- value: 0.99667
1643
- - type: recall_at_3
1644
- value: 0.70072
1645
- - type: recall_at_5
1646
- value: 0.79011
1647
- - task:
1648
- type: Retrieval
1649
- dataset:
1650
- name: MTEB Touche2020
1651
- type: mteb/touche2020
1652
- config: default
1653
- split: test
1654
- metrics:
1655
- - type: map_at_1
1656
- value: 0.01976
1657
- - type: map_at_10
1658
- value: 0.09688
1659
- - type: map_at_100
1660
- value: 0.15117
1661
- - type: map_at_1000
1662
- value: 0.16769
1663
- - type: map_at_3
1664
- value: 0.04589
1665
- - type: map_at_5
1666
- value: 0.06556
1667
- - type: mrr_at_1
1668
- value: 0.26531
1669
- - type: mrr_at_10
1670
- value: 0.43863
1671
- - type: mrr_at_100
1672
- value: 0.44767
1673
- - type: mrr_at_1000
1674
- value: 0.44767
1675
- - type: mrr_at_3
1676
- value: 0.39116
1677
- - type: mrr_at_5
1678
- value: 0.41156
1679
- - type: ndcg_at_1
1680
- value: 0.23469
1681
- - type: ndcg_at_10
1682
- value: 0.24029
1683
- - type: ndcg_at_100
1684
- value: 0.34425
1685
- - type: ndcg_at_1000
1686
- value: 0.46907
1687
- - type: ndcg_at_3
1688
- value: 0.25522
1689
- - type: ndcg_at_5
1690
- value: 0.24333
1691
- - type: precision_at_1
1692
- value: 0.26531
1693
- - type: precision_at_10
1694
- value: 0.22449
1695
- - type: precision_at_100
1696
- value: 0.07122
1697
- - type: precision_at_1000
1698
- value: 0.01527
1699
- - type: precision_at_3
1700
- value: 0.27891
1701
- - type: precision_at_5
1702
- value: 0.25714
1703
- - type: recall_at_1
1704
- value: 0.01976
1705
- - type: recall_at_10
1706
- value: 0.16633
1707
- - type: recall_at_100
1708
- value: 0.4561
1709
- - type: recall_at_1000
1710
- value: 0.82481
1711
- - type: recall_at_3
1712
- value: 0.06101
1713
- - type: recall_at_5
1714
- value: 0.0968
1715
- - task:
1716
- type: Retrieval
1717
- dataset:
1718
- name: MTEB TRECCOVID
1719
- type: mteb/trec-covid
1720
- config: default
1721
- split: test
1722
- metrics:
1723
- - type: map_at_1
1724
- value: 0.00211
1725
- - type: map_at_10
1726
- value: 0.01526
1727
- - type: map_at_100
1728
- value: 0.08863
1729
- - type: map_at_1000
1730
- value: 0.23162
1731
- - type: map_at_3
1732
- value: 0.00555
1733
- - type: map_at_5
1734
- value: 0.00873
1735
- - type: mrr_at_1
1736
- value: 0.76
1737
- - type: mrr_at_10
1738
- value: 0.8485
1739
- - type: mrr_at_100
1740
- value: 0.8485
1741
- - type: mrr_at_1000
1742
- value: 0.8485
1743
- - type: mrr_at_3
1744
- value: 0.84
1745
- - type: mrr_at_5
1746
- value: 0.844
1747
- - type: ndcg_at_1
1748
- value: 0.7
1749
- - type: ndcg_at_10
1750
- value: 0.63098
1751
- - type: ndcg_at_100
1752
- value: 0.49847
1753
- - type: ndcg_at_1000
1754
- value: 0.48395
1755
- - type: ndcg_at_3
1756
- value: 0.68704
1757
- - type: ndcg_at_5
1758
- value: 0.67533
1759
- - type: precision_at_1
1760
- value: 0.76
1761
- - type: precision_at_10
1762
- value: 0.66
1763
- - type: precision_at_100
1764
- value: 0.5134
1765
- - type: precision_at_1000
1766
- value: 0.2168
1767
- - type: precision_at_3
1768
- value: 0.72667
1769
- - type: precision_at_5
1770
- value: 0.716
1771
- - type: recall_at_1
1772
- value: 0.00211
1773
- - type: recall_at_10
1774
- value: 0.01748
1775
- - type: recall_at_100
1776
- value: 0.12448
1777
- - type: recall_at_1000
1778
- value: 0.46795
1779
- - type: recall_at_3
1780
- value: 0.00593
1781
- - type: recall_at_5
1782
- value: 0.00962
1783
  ---
1784
  ## 💫 Community Model> granite embedding 30m english by Ibm-Granite
1785
 
@@ -1787,7 +8,7 @@ model-index:
1787
 
1788
  **Model creator:** [ibm-granite](https://huggingface.co/ibm-granite)<br>
1789
  **Original model**: [granite-embedding-30m-english](https://huggingface.co/ibm-granite/granite-embedding-30m-english)<br>
1790
- **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b4341](https://github.com/ggerganov/llama.cpp/releases/tag/b4341)<br>
1791
 
1792
  ## Technical Details
1793
 
@@ -1797,6 +18,8 @@ Max length of 512 tokens
1797
 
1798
  30 million param model for extremely fast performance
1799
 
 
 
1800
  ## Special thanks
1801
 
1802
  🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
 
1
  ---
2
  quantized_by: bartowski
3
  pipeline_tag: text-generation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
  ## 💫 Community Model> granite embedding 30m english by Ibm-Granite
6
 
 
8
 
9
  **Model creator:** [ibm-granite](https://huggingface.co/ibm-granite)<br>
10
  **Original model**: [granite-embedding-30m-english](https://huggingface.co/ibm-granite/granite-embedding-30m-english)<br>
11
+ **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b4381](https://github.com/ggerganov/llama.cpp/releases/tag/b4381)<br>
12
 
13
  ## Technical Details
14
 
 
18
 
19
  30 million param model for extremely fast performance
20
 
21
+ English only
22
+
23
  ## Special thanks
24
 
25
  🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.