Upload tokenizer
Browse files- README.md +94 -95
- added_tokens.json +1 -0
- tokenizer.json +10 -0
- tokenizer_config.json +8 -0
README.md
CHANGED
@@ -1,319 +1,318 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
datasets:
|
4 |
- lmms-lab/LLaVA-OneVision-Data
|
5 |
language:
|
6 |
- en
|
7 |
- zh
|
|
|
|
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
-
library_name: transformers
|
11 |
tags:
|
12 |
- multimodal
|
13 |
-
|
14 |
model-index:
|
15 |
- name: llava-onevision-qwen-7b-ov
|
16 |
results:
|
17 |
- task:
|
18 |
type: multimodal
|
19 |
dataset:
|
20 |
-
type: ai2d
|
21 |
name: AI2D
|
|
|
22 |
metrics:
|
23 |
-
-
|
24 |
-
type: accuracy
|
25 |
value: 81.4
|
|
|
26 |
verified: true
|
27 |
- task:
|
28 |
type: multimodal
|
29 |
dataset:
|
30 |
-
type: chartqa
|
31 |
name: ChartQA
|
|
|
32 |
metrics:
|
33 |
-
-
|
34 |
-
type: accuracy
|
35 |
value: 80.0
|
|
|
36 |
verified: true
|
37 |
- task:
|
38 |
type: multimodal
|
39 |
dataset:
|
40 |
-
type: docvqa
|
41 |
name: DocVQA
|
|
|
42 |
metrics:
|
43 |
-
-
|
44 |
-
type: accuracy
|
45 |
value: 90.2
|
|
|
46 |
verified: true
|
47 |
- task:
|
48 |
type: multimodal
|
49 |
dataset:
|
50 |
-
type: infovqa
|
51 |
name: InfoVQA
|
|
|
52 |
metrics:
|
53 |
-
-
|
54 |
-
type: accuracy
|
55 |
value: 70.7
|
|
|
56 |
verified: true
|
57 |
- task:
|
58 |
type: multimodal
|
59 |
dataset:
|
60 |
-
type: mathverse
|
61 |
name: MathVerse
|
|
|
62 |
metrics:
|
63 |
-
-
|
64 |
-
type: accuracy
|
65 |
value: 26.2
|
|
|
66 |
verified: true
|
67 |
- task:
|
68 |
type: multimodal
|
69 |
dataset:
|
70 |
-
type: mathvista
|
71 |
name: MathVista
|
|
|
72 |
metrics:
|
73 |
-
-
|
74 |
-
type: accuracy
|
75 |
value: 63.2
|
|
|
76 |
verified: true
|
77 |
- task:
|
78 |
type: multimodal
|
79 |
dataset:
|
80 |
-
type: mmbench
|
81 |
name: MMBench
|
|
|
82 |
metrics:
|
83 |
-
-
|
84 |
-
type: accuracy
|
85 |
value: 80.8
|
|
|
86 |
verified: true
|
87 |
- task:
|
88 |
type: multimodal
|
89 |
dataset:
|
90 |
-
type: mme-perception
|
91 |
name: MME-Perception
|
|
|
92 |
metrics:
|
93 |
-
-
|
94 |
-
type: score
|
95 |
value: 1580
|
|
|
96 |
verified: true
|
97 |
- task:
|
98 |
type: multimodal
|
99 |
dataset:
|
100 |
-
type: mme-cognition
|
101 |
name: MME-Cognition
|
|
|
102 |
metrics:
|
103 |
-
-
|
104 |
-
type: score
|
105 |
value: 418
|
106 |
-
|
|
|
107 |
- task:
|
108 |
type: multimodal
|
109 |
dataset:
|
110 |
-
type: mmmu
|
111 |
name: MMMU
|
|
|
112 |
metrics:
|
113 |
-
-
|
114 |
-
type: accuracy
|
115 |
value: 48.8
|
|
|
116 |
verified: true
|
117 |
- task:
|
118 |
type: multimodal
|
119 |
dataset:
|
120 |
-
type: mmvet
|
121 |
name: MMVet
|
|
|
122 |
metrics:
|
123 |
-
-
|
124 |
-
type: accuracy
|
125 |
value: 57.5
|
|
|
126 |
verified: true
|
127 |
- task:
|
128 |
type: multimodal
|
129 |
dataset:
|
130 |
-
type: mmstar
|
131 |
name: MMStar
|
|
|
132 |
metrics:
|
133 |
-
-
|
134 |
-
type: accuracy
|
135 |
value: 61.7
|
|
|
136 |
verified: true
|
137 |
- task:
|
138 |
type: multimodal
|
139 |
dataset:
|
140 |
-
type: seed-bench
|
141 |
name: Seed-Bench
|
|
|
142 |
metrics:
|
143 |
-
-
|
144 |
-
type: accuracy
|
145 |
value: 75.4
|
|
|
146 |
verified: true
|
147 |
- task:
|
148 |
type: multimodal
|
149 |
dataset:
|
150 |
-
type: science-qa
|
151 |
name: Science-QA
|
|
|
152 |
metrics:
|
153 |
-
-
|
154 |
-
type: accuracy
|
155 |
value: 96.0
|
|
|
156 |
verified: true
|
157 |
- task:
|
158 |
type: multimodal
|
159 |
dataset:
|
160 |
-
type: imagedc
|
161 |
name: ImageDC
|
|
|
162 |
metrics:
|
163 |
-
-
|
164 |
-
type: accuracy
|
165 |
value: 88.9
|
|
|
166 |
verified: true
|
167 |
- task:
|
168 |
type: multimodal
|
169 |
dataset:
|
170 |
-
type: mmlbench
|
171 |
name: MMLBench
|
|
|
172 |
metrics:
|
173 |
-
-
|
174 |
-
type: accuracy
|
175 |
value: 77.1
|
|
|
176 |
verified: true
|
177 |
- task:
|
178 |
type: multimodal
|
179 |
dataset:
|
180 |
-
type: realworldqa
|
181 |
name: RealWorldQA
|
|
|
182 |
metrics:
|
183 |
-
-
|
184 |
-
type: accuracy
|
185 |
value: 66.3
|
|
|
186 |
verified: true
|
187 |
- task:
|
188 |
type: multimodal
|
189 |
dataset:
|
190 |
-
type: vibe-eval
|
191 |
name: Vibe-Eval
|
|
|
192 |
metrics:
|
193 |
-
-
|
194 |
-
type: accuracy
|
195 |
value: 51.7
|
|
|
196 |
verified: true
|
197 |
- task:
|
198 |
type: multimodal
|
199 |
dataset:
|
200 |
-
type: llava-w
|
201 |
name: LLaVA-W
|
|
|
202 |
metrics:
|
203 |
-
-
|
204 |
-
type: accuracy
|
205 |
value: 90.7
|
|
|
206 |
verified: true
|
207 |
- task:
|
208 |
type: multimodal
|
209 |
dataset:
|
210 |
-
type: l-wilder
|
211 |
name: LLaVA-Wilder
|
|
|
212 |
metrics:
|
213 |
-
-
|
214 |
-
type: accuracy
|
215 |
value: 67.8
|
|
|
216 |
verified: true
|
217 |
- task:
|
218 |
type: multimodal
|
219 |
dataset:
|
220 |
-
type: actnet-qa
|
221 |
name: ActNet-QA
|
|
|
222 |
metrics:
|
223 |
-
-
|
224 |
-
type: accuracy
|
225 |
value: 56.6
|
|
|
226 |
verified: true
|
227 |
- task:
|
228 |
type: multimodal
|
229 |
dataset:
|
230 |
-
type: egoschema
|
231 |
name: EgoSchema
|
|
|
232 |
metrics:
|
233 |
-
-
|
234 |
-
type: accuracy
|
235 |
value: 60.1
|
|
|
236 |
verified: true
|
237 |
- task:
|
238 |
type: multimodal
|
239 |
dataset:
|
240 |
-
type: mlvu
|
241 |
name: MLVU
|
|
|
242 |
metrics:
|
243 |
-
-
|
244 |
-
type: accuracy
|
245 |
value: 64.7
|
|
|
246 |
verified: true
|
247 |
- task:
|
248 |
type: multimodal
|
249 |
dataset:
|
250 |
-
type: mvbench
|
251 |
name: MVBench
|
|
|
252 |
metrics:
|
253 |
-
-
|
254 |
-
type: accuracy
|
255 |
value: 56.7
|
|
|
256 |
verified: true
|
257 |
- task:
|
258 |
type: multimodal
|
259 |
dataset:
|
260 |
-
type: nextqa
|
261 |
name: NextQA
|
|
|
262 |
metrics:
|
263 |
-
-
|
264 |
-
type: accuracy
|
265 |
value: 79.4
|
|
|
266 |
verified: true
|
267 |
- task:
|
268 |
type: multimodal
|
269 |
dataset:
|
270 |
-
type: percepTest
|
271 |
name: PercepTest
|
|
|
272 |
metrics:
|
273 |
-
-
|
274 |
-
type: accuracy
|
275 |
value: 49.7
|
|
|
276 |
verified: true
|
277 |
- task:
|
278 |
type: multimodal
|
279 |
dataset:
|
280 |
-
type: seedbench
|
281 |
name: SeedBench
|
|
|
282 |
metrics:
|
283 |
-
-
|
284 |
-
type: accuracy
|
285 |
value: 56.9
|
|
|
286 |
verified: true
|
287 |
- task:
|
288 |
type: multimodal
|
289 |
dataset:
|
290 |
-
type: videochatgpt
|
291 |
name: VideoChatGPT
|
|
|
292 |
metrics:
|
293 |
-
-
|
294 |
-
type: score
|
295 |
value: 3.49
|
|
|
296 |
verified: true
|
297 |
- task:
|
298 |
type: multimodal
|
299 |
dataset:
|
300 |
-
type: videodc
|
301 |
name: VideoDC
|
|
|
302 |
metrics:
|
303 |
-
-
|
304 |
-
type: score
|
305 |
value: 3.75
|
|
|
306 |
verified: true
|
307 |
- task:
|
308 |
type: multimodal
|
309 |
dataset:
|
310 |
-
type: videomme
|
311 |
name: VideoMME
|
|
|
312 |
metrics:
|
313 |
-
-
|
314 |
-
type: accuracy
|
315 |
value: 58.2
|
316 |
-
|
|
|
317 |
---
|
318 |
|
319 |
|
|
|
1 |
---
|
|
|
2 |
datasets:
|
3 |
- lmms-lab/LLaVA-OneVision-Data
|
4 |
language:
|
5 |
- en
|
6 |
- zh
|
7 |
+
library_name: transformers
|
8 |
+
license: apache-2.0
|
9 |
metrics:
|
10 |
- accuracy
|
|
|
11 |
tags:
|
12 |
- multimodal
|
|
|
13 |
model-index:
|
14 |
- name: llava-onevision-qwen-7b-ov
|
15 |
results:
|
16 |
- task:
|
17 |
type: multimodal
|
18 |
dataset:
|
|
|
19 |
name: AI2D
|
20 |
+
type: ai2d
|
21 |
metrics:
|
22 |
+
- type: accuracy
|
|
|
23 |
value: 81.4
|
24 |
+
name: accuracy
|
25 |
verified: true
|
26 |
- task:
|
27 |
type: multimodal
|
28 |
dataset:
|
|
|
29 |
name: ChartQA
|
30 |
+
type: chartqa
|
31 |
metrics:
|
32 |
+
- type: accuracy
|
|
|
33 |
value: 80.0
|
34 |
+
name: accuracy
|
35 |
verified: true
|
36 |
- task:
|
37 |
type: multimodal
|
38 |
dataset:
|
|
|
39 |
name: DocVQA
|
40 |
+
type: docvqa
|
41 |
metrics:
|
42 |
+
- type: accuracy
|
|
|
43 |
value: 90.2
|
44 |
+
name: accuracy
|
45 |
verified: true
|
46 |
- task:
|
47 |
type: multimodal
|
48 |
dataset:
|
|
|
49 |
name: InfoVQA
|
50 |
+
type: infovqa
|
51 |
metrics:
|
52 |
+
- type: accuracy
|
|
|
53 |
value: 70.7
|
54 |
+
name: accuracy
|
55 |
verified: true
|
56 |
- task:
|
57 |
type: multimodal
|
58 |
dataset:
|
|
|
59 |
name: MathVerse
|
60 |
+
type: mathverse
|
61 |
metrics:
|
62 |
+
- type: accuracy
|
|
|
63 |
value: 26.2
|
64 |
+
name: accuracy
|
65 |
verified: true
|
66 |
- task:
|
67 |
type: multimodal
|
68 |
dataset:
|
|
|
69 |
name: MathVista
|
70 |
+
type: mathvista
|
71 |
metrics:
|
72 |
+
- type: accuracy
|
|
|
73 |
value: 63.2
|
74 |
+
name: accuracy
|
75 |
verified: true
|
76 |
- task:
|
77 |
type: multimodal
|
78 |
dataset:
|
|
|
79 |
name: MMBench
|
80 |
+
type: mmbench
|
81 |
metrics:
|
82 |
+
- type: accuracy
|
|
|
83 |
value: 80.8
|
84 |
+
name: accuracy
|
85 |
verified: true
|
86 |
- task:
|
87 |
type: multimodal
|
88 |
dataset:
|
|
|
89 |
name: MME-Perception
|
90 |
+
type: mme-perception
|
91 |
metrics:
|
92 |
+
- type: score
|
|
|
93 |
value: 1580
|
94 |
+
name: score
|
95 |
verified: true
|
96 |
- task:
|
97 |
type: multimodal
|
98 |
dataset:
|
|
|
99 |
name: MME-Cognition
|
100 |
+
type: mme-cognition
|
101 |
metrics:
|
102 |
+
- type: score
|
|
|
103 |
value: 418
|
104 |
+
name: score
|
105 |
+
verified: true
|
106 |
- task:
|
107 |
type: multimodal
|
108 |
dataset:
|
|
|
109 |
name: MMMU
|
110 |
+
type: mmmu
|
111 |
metrics:
|
112 |
+
- type: accuracy
|
|
|
113 |
value: 48.8
|
114 |
+
name: accuracy
|
115 |
verified: true
|
116 |
- task:
|
117 |
type: multimodal
|
118 |
dataset:
|
|
|
119 |
name: MMVet
|
120 |
+
type: mmvet
|
121 |
metrics:
|
122 |
+
- type: accuracy
|
|
|
123 |
value: 57.5
|
124 |
+
name: accuracy
|
125 |
verified: true
|
126 |
- task:
|
127 |
type: multimodal
|
128 |
dataset:
|
|
|
129 |
name: MMStar
|
130 |
+
type: mmstar
|
131 |
metrics:
|
132 |
+
- type: accuracy
|
|
|
133 |
value: 61.7
|
134 |
+
name: accuracy
|
135 |
verified: true
|
136 |
- task:
|
137 |
type: multimodal
|
138 |
dataset:
|
|
|
139 |
name: Seed-Bench
|
140 |
+
type: seed-bench
|
141 |
metrics:
|
142 |
+
- type: accuracy
|
|
|
143 |
value: 75.4
|
144 |
+
name: accuracy
|
145 |
verified: true
|
146 |
- task:
|
147 |
type: multimodal
|
148 |
dataset:
|
|
|
149 |
name: Science-QA
|
150 |
+
type: science-qa
|
151 |
metrics:
|
152 |
+
- type: accuracy
|
|
|
153 |
value: 96.0
|
154 |
+
name: accuracy
|
155 |
verified: true
|
156 |
- task:
|
157 |
type: multimodal
|
158 |
dataset:
|
|
|
159 |
name: ImageDC
|
160 |
+
type: imagedc
|
161 |
metrics:
|
162 |
+
- type: accuracy
|
|
|
163 |
value: 88.9
|
164 |
+
name: accuracy
|
165 |
verified: true
|
166 |
- task:
|
167 |
type: multimodal
|
168 |
dataset:
|
|
|
169 |
name: MMLBench
|
170 |
+
type: mmlbench
|
171 |
metrics:
|
172 |
+
- type: accuracy
|
|
|
173 |
value: 77.1
|
174 |
+
name: accuracy
|
175 |
verified: true
|
176 |
- task:
|
177 |
type: multimodal
|
178 |
dataset:
|
|
|
179 |
name: RealWorldQA
|
180 |
+
type: realworldqa
|
181 |
metrics:
|
182 |
+
- type: accuracy
|
|
|
183 |
value: 66.3
|
184 |
+
name: accuracy
|
185 |
verified: true
|
186 |
- task:
|
187 |
type: multimodal
|
188 |
dataset:
|
|
|
189 |
name: Vibe-Eval
|
190 |
+
type: vibe-eval
|
191 |
metrics:
|
192 |
+
- type: accuracy
|
|
|
193 |
value: 51.7
|
194 |
+
name: accuracy
|
195 |
verified: true
|
196 |
- task:
|
197 |
type: multimodal
|
198 |
dataset:
|
|
|
199 |
name: LLaVA-W
|
200 |
+
type: llava-w
|
201 |
metrics:
|
202 |
+
- type: accuracy
|
|
|
203 |
value: 90.7
|
204 |
+
name: accuracy
|
205 |
verified: true
|
206 |
- task:
|
207 |
type: multimodal
|
208 |
dataset:
|
|
|
209 |
name: LLaVA-Wilder
|
210 |
+
type: l-wilder
|
211 |
metrics:
|
212 |
+
- type: accuracy
|
|
|
213 |
value: 67.8
|
214 |
+
name: accuracy
|
215 |
verified: true
|
216 |
- task:
|
217 |
type: multimodal
|
218 |
dataset:
|
|
|
219 |
name: ActNet-QA
|
220 |
+
type: actnet-qa
|
221 |
metrics:
|
222 |
+
- type: accuracy
|
|
|
223 |
value: 56.6
|
224 |
+
name: accuracy
|
225 |
verified: true
|
226 |
- task:
|
227 |
type: multimodal
|
228 |
dataset:
|
|
|
229 |
name: EgoSchema
|
230 |
+
type: egoschema
|
231 |
metrics:
|
232 |
+
- type: accuracy
|
|
|
233 |
value: 60.1
|
234 |
+
name: accuracy
|
235 |
verified: true
|
236 |
- task:
|
237 |
type: multimodal
|
238 |
dataset:
|
|
|
239 |
name: MLVU
|
240 |
+
type: mlvu
|
241 |
metrics:
|
242 |
+
- type: accuracy
|
|
|
243 |
value: 64.7
|
244 |
+
name: accuracy
|
245 |
verified: true
|
246 |
- task:
|
247 |
type: multimodal
|
248 |
dataset:
|
|
|
249 |
name: MVBench
|
250 |
+
type: mvbench
|
251 |
metrics:
|
252 |
+
- type: accuracy
|
|
|
253 |
value: 56.7
|
254 |
+
name: accuracy
|
255 |
verified: true
|
256 |
- task:
|
257 |
type: multimodal
|
258 |
dataset:
|
|
|
259 |
name: NextQA
|
260 |
+
type: nextqa
|
261 |
metrics:
|
262 |
+
- type: accuracy
|
|
|
263 |
value: 79.4
|
264 |
+
name: accuracy
|
265 |
verified: true
|
266 |
- task:
|
267 |
type: multimodal
|
268 |
dataset:
|
|
|
269 |
name: PercepTest
|
270 |
+
type: percepTest
|
271 |
metrics:
|
272 |
+
- type: accuracy
|
|
|
273 |
value: 49.7
|
274 |
+
name: accuracy
|
275 |
verified: true
|
276 |
- task:
|
277 |
type: multimodal
|
278 |
dataset:
|
|
|
279 |
name: SeedBench
|
280 |
+
type: seedbench
|
281 |
metrics:
|
282 |
+
- type: accuracy
|
|
|
283 |
value: 56.9
|
284 |
+
name: accuracy
|
285 |
verified: true
|
286 |
- task:
|
287 |
type: multimodal
|
288 |
dataset:
|
|
|
289 |
name: VideoChatGPT
|
290 |
+
type: videochatgpt
|
291 |
metrics:
|
292 |
+
- type: score
|
|
|
293 |
value: 3.49
|
294 |
+
name: score
|
295 |
verified: true
|
296 |
- task:
|
297 |
type: multimodal
|
298 |
dataset:
|
|
|
299 |
name: VideoDC
|
300 |
+
type: videodc
|
301 |
metrics:
|
302 |
+
- type: score
|
|
|
303 |
value: 3.75
|
304 |
+
name: score
|
305 |
verified: true
|
306 |
- task:
|
307 |
type: multimodal
|
308 |
dataset:
|
|
|
309 |
name: VideoMME
|
310 |
+
type: videomme
|
311 |
metrics:
|
312 |
+
- type: accuracy
|
|
|
313 |
value: 58.2
|
314 |
+
name: accuracy
|
315 |
+
verified: true
|
316 |
---
|
317 |
|
318 |
|
added_tokens.json
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
{
|
|
|
2 |
"<|endoftext|>": 151643,
|
3 |
"<|im_end|>": 151645,
|
4 |
"<|im_start|>": 151644
|
|
|
1 |
{
|
2 |
+
"<image>": 151646,
|
3 |
"<|endoftext|>": 151643,
|
4 |
"<|im_end|>": 151645,
|
5 |
"<|im_start|>": 151644
|
tokenizer.json
CHANGED
@@ -29,6 +29,15 @@
|
|
29 |
"rstrip": false,
|
30 |
"normalized": false,
|
31 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
}
|
33 |
],
|
34 |
"normalizer": {
|
@@ -73,6 +82,7 @@
|
|
73 |
"end_of_word_suffix": "",
|
74 |
"fuse_unk": false,
|
75 |
"byte_fallback": false,
|
|
|
76 |
"vocab": {
|
77 |
"!": 0,
|
78 |
"\"": 1,
|
|
|
29 |
"rstrip": false,
|
30 |
"normalized": false,
|
31 |
"special": true
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"id": 151646,
|
35 |
+
"content": "<image>",
|
36 |
+
"single_word": false,
|
37 |
+
"lstrip": false,
|
38 |
+
"rstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"special": true
|
41 |
}
|
42 |
],
|
43 |
"normalizer": {
|
|
|
82 |
"end_of_word_suffix": "",
|
83 |
"fuse_unk": false,
|
84 |
"byte_fallback": false,
|
85 |
+
"ignore_merges": false,
|
86 |
"vocab": {
|
87 |
"!": 0,
|
88 |
"\"": 1,
|
tokenizer_config.json
CHANGED
@@ -24,6 +24,14 @@
|
|
24 |
"rstrip": false,
|
25 |
"single_word": false,
|
26 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
}
|
28 |
},
|
29 |
"additional_special_tokens": [
|
|
|
24 |
"rstrip": false,
|
25 |
"single_word": false,
|
26 |
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<image>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
}
|
36 |
},
|
37 |
"additional_special_tokens": [
|