ZhangYuanhan
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -144,7 +144,9 @@ This model support at most 64 frames.
|
|
144 |
|
145 |
### Intended use
|
146 |
|
147 |
-
The model was trained on [LLaVA-Video-178K](https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Video-SFT-Data) and [LLaVA-OneVision Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), having
|
|
|
|
|
148 |
|
149 |
**Feel free to share your generations in the Community tab!**
|
150 |
|
@@ -166,9 +168,7 @@ import sys
|
|
166 |
import warnings
|
167 |
from decord import VideoReader, cpu
|
168 |
import numpy as np
|
169 |
-
|
170 |
warnings.filterwarnings("ignore")
|
171 |
-
|
172 |
def load_video(self, video_path, max_frames_num,fps=1,force_sample=False):
|
173 |
if max_frames_num == 0:
|
174 |
return np.zeros((1, 336, 336, 3))
|
@@ -186,14 +186,12 @@ def load_video(self, video_path, max_frames_num,fps=1,force_sample=False):
|
|
186 |
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
|
187 |
spare_frames = vr.get_batch(frame_idx).asnumpy()
|
188 |
# import pdb;pdb.set_trace()
|
189 |
-
|
190 |
return spare_frames,frame_time,video_time
|
191 |
-
|
192 |
pretrained = "lmms-lab/LLaVA-NeXT-Video-72B-Qwen2"
|
193 |
model_name = "llava_qwen"
|
194 |
device = "cuda"
|
195 |
device_map = "auto"
|
196 |
-
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args
|
197 |
model.eval()
|
198 |
video_path = "XXXX"
|
199 |
max_frames_num = "64"
|
@@ -201,7 +199,8 @@ video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sa
|
|
201 |
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16()
|
202 |
video = [video]
|
203 |
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
|
204 |
-
|
|
|
205 |
conv = copy.deepcopy(conv_templates[conv_template])
|
206 |
conv.append_message(conv.roles[0], question)
|
207 |
conv.append_message(conv.roles[1], None)
|
@@ -210,12 +209,12 @@ input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX,
|
|
210 |
cont = model.generate(
|
211 |
input_ids,
|
212 |
images=video,
|
213 |
-
modalities=["video"],
|
214 |
do_sample=False,
|
215 |
temperature=0,
|
216 |
max_new_tokens=4096,
|
217 |
)
|
218 |
-
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
|
219 |
print(text_outputs)
|
220 |
```
|
221 |
|
|
|
144 |
|
145 |
### Intended use
|
146 |
|
147 |
+
The model was trained on [LLaVA-Video-178K](https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Video-SFT-Data) and [LLaVA-OneVision Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), having the ability to interact with images, multi-image and videos, but specific to videos.
|
148 |
+
|
149 |
+
|
150 |
|
151 |
**Feel free to share your generations in the Community tab!**
|
152 |
|
|
|
168 |
import warnings
|
169 |
from decord import VideoReader, cpu
|
170 |
import numpy as np
|
|
|
171 |
warnings.filterwarnings("ignore")
|
|
|
172 |
def load_video(self, video_path, max_frames_num,fps=1,force_sample=False):
|
173 |
if max_frames_num == 0:
|
174 |
return np.zeros((1, 336, 336, 3))
|
|
|
186 |
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
|
187 |
spare_frames = vr.get_batch(frame_idx).asnumpy()
|
188 |
# import pdb;pdb.set_trace()
|
|
|
189 |
return spare_frames,frame_time,video_time
|
|
|
190 |
pretrained = "lmms-lab/LLaVA-NeXT-Video-72B-Qwen2"
|
191 |
model_name = "llava_qwen"
|
192 |
device = "cuda"
|
193 |
device_map = "auto"
|
194 |
+
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
|
195 |
model.eval()
|
196 |
video_path = "XXXX"
|
197 |
max_frames_num = "64"
|
|
|
199 |
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16()
|
200 |
video = [video]
|
201 |
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
|
202 |
+
time_instruciton = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}.Please answer the following questions related to this video."
|
203 |
+
question = DEFAULT_IMAGE_TOKEN + f"{time_instruciton}\nPlease describe this video in detail."
|
204 |
conv = copy.deepcopy(conv_templates[conv_template])
|
205 |
conv.append_message(conv.roles[0], question)
|
206 |
conv.append_message(conv.roles[1], None)
|
|
|
209 |
cont = model.generate(
|
210 |
input_ids,
|
211 |
images=video,
|
212 |
+
modalities= ["video"],
|
213 |
do_sample=False,
|
214 |
temperature=0,
|
215 |
max_new_tokens=4096,
|
216 |
)
|
217 |
+
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
|
218 |
print(text_outputs)
|
219 |
```
|
220 |
|