--- language: - en - zh license: apache-2.0 tags: - vision - image-text-to-text - transformers.js datasets: - lmms-lab/LLaVA-OneVision-Data pipeline_tag: image-text-to-text arxiv: 2408.03326 library_name: transformers --- # LLaVA-Onevision Model Card ![image/png](llava_onevision_arch.png) Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-4AtYjR8UMtCALV0AswU1kiNkWCLTALT?usp=sharing) Below is the model card of 0.5B LLaVA-Onevision model which is copied from the original LLaVA-Onevision model card that you can find [here](https://huggingface.co/lmms-lab/llava-onevision-qwen2-0.5b-si). ## Model details **Model type:** LLaVA-Onevision is an open-source multimodal LLM trained by fine-tuning Qwen2 on GPT-generated multimodal instruction-following data. LLaVA-OneVision is the first single model that can simultaneously push the performance boundaries of open LMMs in three important computer vision scenarios: single-image, multi-image, and video scenarios. Importantly, the design of LLaVA-OneVision allows strong transfer learning across different modalities/scenarios, yielding new emerging capabilities. In particular, strong video understanding and cross-scenario capabilities are demonstrated through task transfer from images to videos. **Model date:** LLaVA-Onevision-0.5-ov was added in August 2024. **Paper or resources for more information:** https://llava-vl.github.io/ - **Architecture:** SO400M + Qwen2 - **Pretraining Stage:** LCS-558K, 1 epoch, projector - **Mid Stage:** A mixture of 4.7M high-quality synthetic data, 1 epoch, full model - **Final-Image Stage:** A mixture of 3.6M single-image data, 1 epoch, full model - **OneVision Stage:** A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model - **Precision:** bfloat16 ## How to use the model First, make sure to have `transformers` installed from [branch](https://github.com/huggingface/transformers/pull/32673) or `transformers >= 4.45.0`. The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template by applying chat template: ### Using `pipeline`: Below we used [`"llava-hf/llava-onevision-qwen2-0.5b-ov-hf"`](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf) checkpoint. ```python from transformers import pipeline pipe = pipeline("image-text-to-text", model="llava-onevision-qwen2-0.5b-ov-hf") messages = [ { "role": "user", "content": [ {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"}, {"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"}, ], }, ] out = pipe(text=messages, max_new_tokens=20) print(out) >>> [{'input_text': [{'role': 'user', 'content': [{'type': 'image', 'url': 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg'}, {'type': 'text', 'text': 'What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud'}]}], 'generated_text': 'Lava'}] ``` ### Using pure `transformers`: Below is an example script to run generation in `float16` precision on a GPU device: ```python import requests from PIL import Image import torch from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf" model = LlavaOnevisionForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to(0) processor = AutoProcessor.from_pretrained(model_id) # Define a chat history and use `apply_chat_template` to get correctly formatted prompt # Each value in "content" has to be a list of dicts with types ("text", "image") conversation = [ { "role": "user", "content": [ {"type": "text", "text": "What are these?"}, {"type": "image"}, ], }, ] prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" raw_image = Image.open(requests.get(image_file, stream=True).raw) inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16) output = model.generate(**inputs, max_new_tokens=200, do_sample=False) print(processor.decode(output[0][2:], skip_special_tokens=True)) ``` ### Model optimization #### 4-bit quantization through `bitsandbytes` library First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with: ```diff model = LlavaOnevisionForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, + load_in_4bit=True ) ``` #### Use Flash-Attention 2 to further speed-up generation First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with: ```diff model = LlavaOnevisionForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, + use_flash_attention_2=True ).to(0) ``` ### Usage w/ Transformers.js If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Multi-round conversations w/ PKV caching ```js import { AutoProcessor, AutoTokenizer, LlavaOnevisionForConditionalGeneration, RawImage } from '@huggingface/transformers'; // Load tokenizer, processor and model const model_id = 'llava-hf/llava-onevision-qwen2-0.5b-ov-hf'; const tokenizer = await AutoTokenizer.from_pretrained(model_id); const processor = await AutoProcessor.from_pretrained(model_id); const model = await LlavaOnevisionForConditionalGeneration.from_pretrained(model_id, { dtype: { embed_tokens: 'fp16', // or 'fp32' or 'q8' vision_encoder: 'fp16', // or 'fp32' or 'q8' decoder_model_merged: 'q4', // or 'q8' }, // device: 'webgpu', }); // Prepare text inputs const prompt = 'What does the text say?'; const messages = [ { role: 'system', content: 'Answer the question.' }, { role: 'user', content: `\n${prompt}` } ] const text = tokenizer.apply_chat_template(messages, { tokenize: false, add_generation_prompt: true }); const text_inputs = tokenizer(text); // Prepare vision inputs const url = 'https://huggingface.co/qnguyen3/nanoLLaVA/resolve/main/example_1.png'; const image = await RawImage.fromURL(url); const vision_inputs = await processor(image); // Generate response const { past_key_values, sequences } = await model.generate({ ...text_inputs, ...vision_inputs, do_sample: false, max_new_tokens: 64, return_dict_in_generate: true, }); // Decode output const answer = tokenizer.decode( sequences.slice(0, [text_inputs.input_ids.dims[1], null]), { skip_special_tokens: true }, ); console.log(answer); // The text says "small but mighty" in a playful font. const new_messages = [ ...messages, { role: 'assistant', content: answer }, { role: 'user', content: 'How does the text correlate to the context of the image?' } ] const new_text = tokenizer.apply_chat_template(new_messages, { tokenize: false, add_generation_prompt: true }); const new_text_inputs = tokenizer(new_text); // Generate another response const output = await model.generate({ ...new_text_inputs, past_key_values, do_sample: false, max_new_tokens: 256, }); const new_answer = tokenizer.decode( output.slice(0, [new_text_inputs.input_ids.dims[1], null]), { skip_special_tokens: true }, ); console.log(new_answer); // The text "small but mighty" is likely a playful or humorous reference to the image of the blue mouse with the orange dumbbell. It could be used as a motivational phrase or a playful way to express the idea that even small things can be impressive or powerful. ``` # Citation ``` @misc{li2024llavaonevisioneasyvisualtask, title={LLaVA-OneVision: Easy Visual Task Transfer}, author={Bo Li and Yuanhan Zhang and Dong Guo and Renrui Zhang and Feng Li and Hao Zhang and Kaichen Zhang and Yanwei Li and Ziwei Liu and Chunyuan Li}, year={2024}, eprint={2408.03326}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2408.03326}, } ```