Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,235 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: llama2
|
5 |
+
pipeline_tag: image-text-to-text
|
6 |
+
---
|
7 |
+
|
8 |
+
# LLaVA-NeXT-Video Model Card
|
9 |
+
|
10 |
+
Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1CZggLHrjxMReG-FNOmqSOdi4z7NPq6SO?usp=sharing)
|
11 |
+
|
12 |
+
Disclaimer: The team releasing LLaVa-NeXT-Video did not write a model card for this model so this model card has been written by the Hugging Face team.
|
13 |
+
|
14 |
+
## π Model details
|
15 |
+
|
16 |
+
**Model type:**
|
17 |
+
LLaVA-Next-Video is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. The model is buit on top of LLaVa-NeXT by tuning on a mix of video and image data to achieves better video understanding capabilities. The videos were sampled uniformly to be 32 frames per clip.
|
18 |
+
The model is a current SOTA among open-source models on [VideoMME bench](https://arxiv.org/abs/2405.21075).
|
19 |
+
Base LLM: [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5)
|
20 |
+
|
21 |
+
<img src="http://drive.google.com/uc?export=view&id=1fVg-r5MU3NoHlTpD7_lYPEBWH9R8na_4">
|
22 |
+
|
23 |
+
|
24 |
+
**Model date:**
|
25 |
+
LLaVA-Next-Video-7B was trained in April 2024.
|
26 |
+
|
27 |
+
**Paper or resources for more information:** https://github.com/LLaVA-VL/LLaVA-NeXT
|
28 |
+
|
29 |
+
|
30 |
+
## π Training dataset
|
31 |
+
|
32 |
+
### Image
|
33 |
+
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
|
34 |
+
- 158K GPT-generated multimodal instruction-following data.
|
35 |
+
- 500K academic-task-oriented VQA data mixture.
|
36 |
+
- 50K GPT-4V data mixture.
|
37 |
+
- 40K ShareGPT data.
|
38 |
+
|
39 |
+
### Video
|
40 |
+
- 100K VideoChatGPT-Instruct.
|
41 |
+
|
42 |
+
## π Evaluation dataset
|
43 |
+
A collection of 4 benchmarks, including 3 academic VQA benchmarks and 1 captioning benchmark.
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
## π How to use the model
|
48 |
+
|
49 |
+
First, make sure to have `transformers >= 4.42.0`.
|
50 |
+
The model supports multi-visual and multi-prompt generation. Meaning that you can pass multiple images/videos in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` or `<video>` to the location where you want to query images/videos:
|
51 |
+
|
52 |
+
Below is an example script to run generation in `float16` precision on a GPU device:
|
53 |
+
|
54 |
+
```python
|
55 |
+
import av
|
56 |
+
import torch
|
57 |
+
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration
|
58 |
+
|
59 |
+
model_id = "llava-hf/LLaVA-NeXT-Video-7B-32K-hf"
|
60 |
+
|
61 |
+
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
62 |
+
model_id,
|
63 |
+
torch_dtype=torch.float16,
|
64 |
+
low_cpu_mem_usage=True,
|
65 |
+
).to(0)
|
66 |
+
|
67 |
+
processor = LlavaNextVideoProcessor.from_pretrained(model_id)
|
68 |
+
|
69 |
+
def read_video_pyav(container, indices):
|
70 |
+
'''
|
71 |
+
Decode the video with PyAV decoder.
|
72 |
+
Args:
|
73 |
+
container (`av.container.input.InputContainer`): PyAV container.
|
74 |
+
indices (`List[int]`): List of frame indices to decode.
|
75 |
+
Returns:
|
76 |
+
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
|
77 |
+
'''
|
78 |
+
frames = []
|
79 |
+
container.seek(0)
|
80 |
+
start_index = indices[0]
|
81 |
+
end_index = indices[-1]
|
82 |
+
for i, frame in enumerate(container.decode(video=0)):
|
83 |
+
if i > end_index:
|
84 |
+
break
|
85 |
+
if i >= start_index and i in indices:
|
86 |
+
frames.append(frame)
|
87 |
+
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
88 |
+
|
89 |
+
|
90 |
+
# define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
|
91 |
+
# Each value in "content" has to be a list of dicts with types ("text", "image", "video")
|
92 |
+
conversation = [
|
93 |
+
{
|
94 |
+
|
95 |
+
"role": "user",
|
96 |
+
"content": [
|
97 |
+
{"type": "text", "text": "Why is this video funny?"},
|
98 |
+
{"type": "video"},
|
99 |
+
],
|
100 |
+
},
|
101 |
+
]
|
102 |
+
|
103 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
104 |
+
|
105 |
+
video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
|
106 |
+
container = av.open(video_path)
|
107 |
+
|
108 |
+
# sample uniformly 8 frames from the video, can sample more for longer videos
|
109 |
+
total_frames = container.streams.video[0].frames
|
110 |
+
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
|
111 |
+
clip = read_video_pyav(container, indices)
|
112 |
+
inputs_video = processor(text=prompt, videos=clip, padding=True, return_tensors="pt").to(model.device)
|
113 |
+
|
114 |
+
output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
|
115 |
+
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
116 |
+
```
|
117 |
+
|
118 |
+
### Inference with images as inputs
|
119 |
+
|
120 |
+
To generate from images use the below code after loading the model as shown above:
|
121 |
+
|
122 |
+
```python
|
123 |
+
import requests
|
124 |
+
from PIL import Image
|
125 |
+
|
126 |
+
conversation = [
|
127 |
+
{
|
128 |
+
"role": "user",
|
129 |
+
"content": [
|
130 |
+
{"type": "text", "text": "What are these?"},
|
131 |
+
{"type": "image"},
|
132 |
+
],
|
133 |
+
},
|
134 |
+
]
|
135 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
136 |
+
|
137 |
+
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
138 |
+
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
139 |
+
inputs_image = processor(prompt, images=raw_image, return_tensors='pt').to(0, torch.float16)
|
140 |
+
|
141 |
+
output = model.generate(**inputs_video, max_new_tokens=100, do_sample=False)
|
142 |
+
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
143 |
+
```
|
144 |
+
|
145 |
+
### Inference with images and videos as inputs
|
146 |
+
|
147 |
+
To generate from images and videos in one generate use the below code after loading the model as shown above:
|
148 |
+
|
149 |
+
```python
|
150 |
+
conversation_1 = [
|
151 |
+
{
|
152 |
+
"role": "user",
|
153 |
+
"content": [
|
154 |
+
{"type": "text", "text": "What's the content of the image>"},
|
155 |
+
{"type": "image"},
|
156 |
+
],
|
157 |
+
}
|
158 |
+
]
|
159 |
+
conversation_2 = [
|
160 |
+
{
|
161 |
+
"role": "user",
|
162 |
+
"content": [
|
163 |
+
{"type": "text", "text": "Why is this video funny?"},
|
164 |
+
{"type": "video"},
|
165 |
+
],
|
166 |
+
},
|
167 |
+
]
|
168 |
+
prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True)
|
169 |
+
prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
|
170 |
+
|
171 |
+
s = processor(text=[prompt_1, prompt_2], images=image, videos=clip, padding=True, return_tensors="pt").to(model.device)
|
172 |
+
|
173 |
+
# Generate
|
174 |
+
generate_ids = model.generate(**inputs, max_new_tokens=100)
|
175 |
+
out = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
176 |
+
print(out)
|
177 |
+
```
|
178 |
+
|
179 |
+
### Model optimization
|
180 |
+
|
181 |
+
#### 4-bit quantization through `bitsandbytes` library
|
182 |
+
|
183 |
+
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
|
184 |
+
|
185 |
+
```diff
|
186 |
+
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
187 |
+
model_id,
|
188 |
+
torch_dtype=torch.float16,
|
189 |
+
low_cpu_mem_usage=True,
|
190 |
+
+ load_in_4bit=True
|
191 |
+
)
|
192 |
+
```
|
193 |
+
|
194 |
+
#### Use Flash-Attention 2 to further speed-up generation
|
195 |
+
|
196 |
+
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
|
197 |
+
|
198 |
+
```diff
|
199 |
+
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
200 |
+
model_id,
|
201 |
+
torch_dtype=torch.float16,
|
202 |
+
low_cpu_mem_usage=True,
|
203 |
+
+ use_flash_attention_2=True
|
204 |
+
).to(0)
|
205 |
+
```
|
206 |
+
|
207 |
+
|
208 |
+
## π License
|
209 |
+
Llama 2 is licensed under the LLAMA 2 Community License,
|
210 |
+
Copyright (c) Meta Platforms, Inc. All Rights Reserved.
|
211 |
+
|
212 |
+
|
213 |
+
## βοΈ Citation
|
214 |
+
If you find our paper and code useful in your research:
|
215 |
+
|
216 |
+
```BibTeX
|
217 |
+
@misc{zhang2024llavanextvideo,
|
218 |
+
title={LLaVA-NeXT: A Strong Zero-shot Video Understanding Model},
|
219 |
+
url={https://llava-vl.github.io/blog/2024-04-30-llava-next-video/},
|
220 |
+
author={Zhang, Yuanhan and Li, Bo and Liu, haotian and Lee, Yong jae and Gui, Liangke and Fu, Di and Feng, Jiashi and Liu, Ziwei and Li, Chunyuan},
|
221 |
+
month={April},
|
222 |
+
year={2024}
|
223 |
+
}
|
224 |
+
```
|
225 |
+
|
226 |
+
```BibTeX
|
227 |
+
@misc{liu2024llavanext,
|
228 |
+
title={LLaVA-NeXT: Improved reasoning, OCR, and world knowledge},
|
229 |
+
url={https://llava-vl.github.io/blog/2024-01-30-llava-next/},
|
230 |
+
author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Li, Bo and Zhang, Yuanhan and Shen, Sheng and Lee, Yong Jae},
|
231 |
+
month={January},
|
232 |
+
year={2024}
|
233 |
+
}
|
234 |
+
```
|
235 |
+
|