vdr-2b-v1 / custom_st.py
cheesyFishes's picture
Update custom_st.py
0965666 verified
raw
history blame
12.5 kB
import base64
import json
import os
import math
from io import BytesIO
from typing import Any, Dict, List, Literal, Optional, Union
from urllib.parse import urlparse
import requests
import torch
from PIL import Image
from torch import nn
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
class Transformer(nn.Module):
save_in_root: bool = True
def __init__(
self,
model_name_or_path: str = 'llamaindex/vdr-2b-multi-v1',
processor_name_or_path: Optional[str] = None,
max_pixels: int = 768 * 28 * 28,
min_pixels: int = 1 * 28 * 28,
dimension: int = 2048,
max_seq_length: Optional[int] = None,
model_args: Optional[Dict[str, Any]] = None,
processor_args: Optional[Dict[str, Any]] = None,
tokenizer_args: Optional[Dict[str, Any]] = None,
config_args: Optional[Dict[str, Any]] = None,
cache_dir: Optional[str] = None,
backend: Literal['torch', 'onnx', 'openvino'] = 'torch',
**kwargs,
) -> None:
super(Transformer, self).__init__()
if backend != 'torch':
raise ValueError(
f'Backend \'{backend}\' is not supported, please use \'torch\' instead'
)
self.dimension = dimension
self.max_pixels = max_pixels
self.min_pixels = min_pixels
self.max_seq_length = max_seq_length
# Handle args
model_kwargs = model_args or {}
model_kwargs.update(kwargs)
processor_kwargs = processor_args or {}
processor_kwargs.update({
'min_pixels': min_pixels,
'max_pixels': max_pixels,
'cache_dir': cache_dir
})
# Initialize model
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
model_name_or_path,
cache_dir=cache_dir,
**model_kwargs
).eval()
# Initialize processor
self.processor = AutoProcessor.from_pretrained(
processor_name_or_path or model_name_or_path,
**processor_kwargs
)
# Set padding sides
self.model.padding_side = "left"
self.processor.tokenizer.padding_side = "left"
# Store prompts
self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
# Try to infer max_seq_length if not provided
if self.max_seq_length is None:
if (
hasattr(self.model, 'config')
and hasattr(self.model.config, 'max_position_embeddings')
and hasattr(self.processor.tokenizer, 'model_max_length')
):
self.max_seq_length = min(
self.model.config.max_position_embeddings,
self.processor.tokenizer.model_max_length,
)
def _smart_resize(self, height: int, width: int) -> tuple[int, int]:
h_bar = max(28, self._round_by_factor(height, 28))
w_bar = max(28, self._round_by_factor(width, 28))
if h_bar * w_bar > self.max_pixels:
beta = math.sqrt((height * width) / self.max_pixels)
h_bar = self._floor_by_factor(height / beta, 28)
w_bar = self._floor_by_factor(width / beta, 28)
elif h_bar * w_bar < self.min_pixels:
beta = math.sqrt(self.min_pixels / (height * width))
h_bar = self._ceil_by_factor(height * beta, 28)
w_bar = self._ceil_by_factor(width * beta, 28)
return w_bar, h_bar
@staticmethod
def _round_by_factor(number: float, factor: int) -> int:
return round(number / factor) * factor
@staticmethod
def _ceil_by_factor(number: float, factor: int) -> int:
return math.ceil(number / factor) * factor
@staticmethod
def _floor_by_factor(number: float, factor: int) -> int:
return math.floor(number / factor) * factor
def _resize_image(self, image: Image.Image) -> Image.Image:
new_size = self._smart_resize(image.height, image.width)
return image.resize(new_size)
@staticmethod
def _decode_data_image(data_image_str: str) -> Image.Image:
header, data = data_image_str.split(',', 1)
image_data = base64.b64decode(data)
return Image.open(BytesIO(image_data))
@staticmethod
def _is_valid_url(url: str) -> bool:
try:
result = urlparse(url)
# Check if scheme and netloc are present and scheme is http/https
return all([result.scheme in ('http', 'https'), result.netloc])
except Exception:
return False
@staticmethod
def _is_safe_path(path: str) -> bool:
try:
# Convert to absolute path and normalize
abs_path = os.path.abspath(os.path.normpath(path))
# Check if file exists and is a regular file (not a directory or special file)
return os.path.isfile(abs_path)
except Exception:
return False
@staticmethod
def _load_image_from_url(url: str) -> Image.Image:
try:
response = requests.get(
url,
stream=True,
timeout=10, # Add timeout
headers={'User-Agent': 'Mozilla/5.0'} # Add user agent
)
response.raise_for_status()
# Check content type
content_type = response.headers.get('content-type', '')
if not content_type.startswith('image/'):
raise ValueError(f"Invalid content type: {content_type}")
# Limit file size (e.g., 10MB)
content = BytesIO()
size = 0
max_size = 10 * 1024 * 1024 # 10MB
for chunk in response.iter_content(chunk_size=8192):
size += len(chunk)
if size > max_size:
raise ValueError("File too large")
content.write(chunk)
content.seek(0)
return Image.open(content)
except Exception as e:
raise ValueError(f"Failed to load image from URL: {str(e)}")
@staticmethod
def _load_image_from_path(image_path: str) -> Image.Image:
try:
# Convert to absolute path and normalize
abs_path = os.path.abspath(os.path.normpath(image_path))
# Check file size before loading
file_size = os.path.getsize(abs_path)
max_size = 10 * 1024 * 1024 # 10MB
if file_size > max_size:
raise ValueError("File too large")
with Image.open(abs_path) as img:
# Make a copy to ensure file handle is closed
return img.copy()
except Exception as e:
raise ValueError(f"Failed to load image from path: {str(e)}")
@staticmethod
def _load_image_from_bytes(image_bytes: bytes) -> Image.Image:
try:
# Check size
if len(image_bytes) > 10 * 1024 * 1024: # 10MB
raise ValueError("Image data too large")
return Image.open(BytesIO(image_bytes))
except Exception as e:
raise ValueError(f"Failed to load image from bytes: {str(e)}")
def _process_input(self, texts: List[Union[str, Image.Image, bytes]]) -> tuple[List[str], List[Image.Image]]:
processed_texts = []
processed_images = []
dummy_image = Image.new('RGB', (56, 56))
for sample in texts:
if isinstance(sample, str):
# Check if the string is a valid URL
if self._is_valid_url(sample):
try:
img = self._load_image_from_url(sample)
processed_texts.append(self.document_prompt)
processed_images.append(self._resize_image(img))
except Exception as e:
# If URL loading fails, treat as regular text
processed_texts.append(self.query_prompt % sample)
processed_images.append(dummy_image)
# Check if the string is a valid file path
elif self._is_safe_path(sample):
try:
img = self._load_image_from_path(sample)
processed_texts.append(self.document_prompt)
processed_images.append(self._resize_image(img))
except Exception as e:
# If image loading fails, treat as regular text
processed_texts.append(self.query_prompt % sample)
processed_images.append(dummy_image)
else:
# Regular text query
processed_texts.append(self.query_prompt % sample)
processed_images.append(dummy_image)
elif isinstance(sample, Image.Image):
processed_texts.append(self.document_prompt)
processed_images.append(self._resize_image(sample))
elif isinstance(sample, bytes):
try:
img = self._load_image_from_bytes(sample)
processed_texts.append(self.document_prompt)
processed_images.append(self._resize_image(img))
except Exception as e:
# If bytes can't be converted to image, use dummy
processed_texts.append(self.document_prompt)
processed_images.append(dummy_image)
return processed_texts, processed_images
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
cache_position = torch.arange(0, features['input_ids'].shape[1])
inputs = self.model.prepare_inputs_for_generation(
**features, cache_position=cache_position, use_cache=False
)
# ensure inputs are on the same device as the model
device = next(self.model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items() if isinstance(v, torch.Tensor)}
with torch.no_grad():
output = self.model(
**inputs,
return_dict=True,
output_hidden_states=True
)
embeddings = output.hidden_states[-1][:, -1]
features['sentence_embedding'] = torch.nn.functional.normalize(
embeddings[:, :self.dimension], p=2, dim=-1
)
return features
def tokenize(self, texts: List[Union[str, Image.Image, bytes]], padding: str = 'longest') -> Dict[str, torch.Tensor]:
processed_texts, processed_images = self._process_input(texts)
return self.processor(
text=processed_texts,
images=processed_images,
videos=None,
padding=padding,
return_tensors='pt'
)
def save(self, output_path: str, safe_serialization: bool = True) -> None:
"""Save the model, tokenizer and processor to the given path."""
self.model.save_pretrained(output_path, safe_serialization=safe_serialization)
self.processor.save_pretrained(output_path)
# Save the configuration
config = {
'model_name_or_path': output_path,
'max_pixels': self.max_pixels,
'min_pixels': self.min_pixels,
'dimension': self.dimension,
'max_seq_length': self.max_seq_length,
}
config_path = os.path.join(output_path, 'sentence_bert_config.json')
with open(config_path, 'w') as f:
json.dump(config, f)
@staticmethod
def load(input_path: str) -> 'Transformer':
"""Load a saved model from the given path."""
# Load configuration
config_path = os.path.join(input_path, 'sentence_bert_config.json')
if os.path.exists(config_path):
with open(config_path) as f:
config = json.load(f)
else:
config = {'model_name_or_path': input_path}
return Transformer(**config)