File size: 9,625 Bytes
bbfaa75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33a911a
bbfaa75
 
 
 
 
 
 
 
 
 
 
68a719e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb8eae5
68a719e
 
 
 
 
 
 
 
 
 
 
 
 
bbfaa75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68a719e
bbfaa75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68a719e
bbfaa75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68a719e
 
 
 
 
 
 
 
 
 
 
 
 
bb8eae5
68a719e
bb8eae5
68a719e
 
 
 
 
 
 
 
 
 
 
 
bbfaa75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
---
license: apache-2.0
language:
- en
base_model:
- MrLight/dse-qwen2-2b-mrl-v1
tags:
- transformers
- Qwen2-VL
---

# vdr-2b-v1

![](cover.png)

vdr-2b-v1 is an english only embedding model designed for visual document retrieval. It encodes document page screenshots into dense single-vector representations, this will effectively allow to search and query visually rich multilingual documents without the need for any OCR, data extraction pipelines, chunking...

- **Trained on the 🇬🇧 English vdr-multi-train subset:** extensive training dataset of 100k high-quality english samples.

- **Low VRAM and Faster Inference**: achieves better results on synthetic Vidore benchmarks with just 30% of the base model image resolution. This results in 3x faster inference and much lower VRAM usage.

- **Matryoshka Representation Learning**: You can reduce the vectors size 3x and still keep 98% of the embeddings quality.

The multilingual version is available [here](https://huggingface.co/llamaindex/vdr-2b-multi-v1). To know more about both models, read the [announcement blogpost](https://huggingface.co/blog/marco/vdr-2b-multilingual).

# Usage

The model uses bf16 tensors and allocates ~4.4GB of VRAM when loaded. You can easily run inference and generate embeddings using 768 image patches and a batch size of 16 even on a cheap NVIDIA T4 GPU. This table reports the memory footprint (GB) under conditions of different batch sizes with HuggingFace Transformers and maximum 768 image patches.

| Batch Size | GPU Memory (GB) |
|------------|-----------------|
|          4 |             6.9 |
|          8 |             8.8 |
|         16 |            11.5 |
|         32 |            19.7 |

You can generate embeddings with this model in many different ways:

<details open>
<summary>
via LlamaIndex
</summary>

```bash
pip install -U llama-index-embeddings-huggingface
```

```python
from llama_index.embeddings.huggingface import HuggingFaceEmbedding

model = HuggingFaceEmbedding(
    model_name="llamaindex/vdr-2b-v1",
    device="mps",
    trust_remote_code=True,
)

embeddings = model.get_image_embedding("image.png")
```

</details>

<details>
<summary>
via HuggingFace Transformers
</summary>

```python
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import torch
import math

# more pixels -> better embeddings -> more VRAM -> slower inference
# From my experience, 768 image patches is the right spot for compute efficient embeddings.
max_pixels = 768 * 28 * 28
min_pixels = 1 * 28 * 28

# Load the embedding model and processor
model = Qwen2VLForConditionalGeneration.from_pretrained(
    'llamaindex/vdr-2b-v1',
    # These are the recommended kwargs for the model, but change them as needed
    attn_implementation="flash_attention_2",
    torch_dtype=torch.bfloat16,
    device_map="cuda:0"
).eval()

processor = AutoProcessor.from_pretrained(
    'llamaindex/vdr-2b-v1',
    min_pixels=min_pixels,
    max_pixels=max_pixels
)

model.padding_side = "left"
processor.tokenizer.padding_side = "left"

document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"

query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
```

**Encode queries**

```python
def encode_queries(queries: list[str], dimension: int) -> torch.Tensor:
    """
    Encode a list of queries into a tensor of embeddings.

    Args:
        queries: A list of strings, each representing a query.
        dimension: The desired dimension of the output embeddings.

    Returns:
        A tensor of shape (num_queries, dimension) containing the encoded queries.
    """

    dummy_image = Image.new('RGB', (56, 56))
    inputs = processor(
        text=[query_prompt % x for x in queries],
        images=[dummy_image for _ in queries],
        videos=None,
        padding='longest',
        return_tensors='pt'
    ).to('cuda:0')

    cache_position = torch.arange(0, len(queries))
    inputs = model.prepare_inputs_for_generation(
        **inputs, cache_position=cache_position, use_cache=False)

    with torch.no_grad():
        output = self.model(
            **inputs,
            return_dict=True,
            output_hidden_states=True
        )

    embeddings = output.hidden_states[-1][:, -1]
    return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
```

**Encode documents**

```python
def round_by_factor(number: float, factor: int) -> int:
    return round(number / factor) * factor

def ceil_by_factor(number: float, factor: int) -> int:
    return math.ceil(number / factor) * factor

def floor_by_factor(number: float, factor: int) -> int:
    return math.floor(number / factor) * factor

def smart_resize(height: int, width: int) -> tuple[int, int]:
    h_bar = max(28, round_by_factor(height, 28))
    w_bar = max(28, round_by_factor(width, 28))
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = floor_by_factor(height / beta, 28)
        w_bar = floor_by_factor(width / beta, 28)
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = ceil_by_factor(height * beta, 28)
        w_bar = ceil_by_factor(width * beta, 28)
    return w_bar, h_bar

def resize(image: Image.Image):
    new_size = smart_resize(image.height, image.width)
    return image.resize(new_size)

def encode_documents(documents: list[Image.Image], dimension: int):
    """
    Encode a list of images into a tensor of embeddings.

    Args:
        documents: A list of PIL Image objects.
        dimension: The desired dimension of the output embeddings.

    Returns:
        A tensor of shape (num_documents, dimension) containing the encoded images.
    """
    
    inputs = processor(
        text=[document_prompt] * len(documents),
        images=[resize(x) for x in documents],
        videos=None,
        padding='longest',
        return_tensors='pt'
    ).to('cuda:0')

    cache_position = torch.arange(0, len(queries))
    inputs = model.prepare_inputs_for_generation(
        **inputs, cache_position=cache_position, use_cache=False)

    with torch.no_grad():
        output = self.model(
            **inputs,
            return_dict=True,
            output_hidden_states=True
        )
    
    embeddings = output.hidden_states[-1][:, -1]
    return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
```

</details>


<details>
<summary>
via SentenceTransformers
</summary>

```python
from sentence_transformers import SentenceTransformer

model = SentenceTransformer(
    model_name_or_path="llamaindex/vdr-2b-v1",
    device="cuda",
    trust_remote_code=True,
    # These are the recommended kwargs for the model, but change them as needed if you don't have CUDA
    model_kwargs={
        "torch_dtype": torch.bfloat16, 
        "device_map": "cuda:0", 
        "attn_implementation": "flash_attention_2"
    },
)

embeddings = model.encode("image.png")
```

</details>

# Training

The model is based on [MrLight/dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) and it was trained on the new [vdr-multilingual-train](https://huggingface.co/datasets/llamaindex/vdr-multilingual-train) english subset that consinsists of 100k high quality samples. It was trained for 1 epoch using the [DSE approach](https://arxiv.org/abs/2406.11251), with a batch size of 128 and hard-mined negatives.

# Results

The model has been evaluated on the Vidore benchmark. All evaluations are performed by calculating **NDCG@5** scores using an image resolution that can be represented with **maximum 768 tokens**.

On the full Vidore benchmark (evaluated with 768 image tokens), both the multilingual and the english-only version performs better than the base model.

|                     | **Avg**  | **shiftproject** | **government** | **healthcare** | **energy** | **ai**   | **docvqa** | **arxivqa** | **tatdqa** | **infovqa** | **tabfquad** |
|---------------------|----------|------------------|----------------|----------------|------------|----------|------------|-------------|------------|-------------|--------------|
| dse-qwen2-2b-mrl-v1 | 83.6     | 79.8             | 95.7           | 96.9           | 92         | 98.2     | 56.3       | **85.2**    | 53.9       | 87.5        | 90.3         |
| vdr-2b-multi-v1     | 84.0     | 82.4             | 95.5           | 96.5           | 91.2       | **98.5** | **58.5**   | 84.7        | 53.6       | 87.1        | **92.2**     |
| vdr-2b-v1           | **84.3** | **83.4**         | **96.9**       | **97.2**       | **92.6**   | 96.8     | 57.4       | 85.1        | **54.1**   | **87.9**    | 91.3         |

![](chart.png)

|                                         | Avg      | shiftproject | government | healthcare | energy   | ai       |
|-----------------------------------------|----------|--------------|------------|------------|----------|----------|
| dse-qwen2-2b-mrl-v1 (2560 image tokens) | 93.0     | 82           | 96         | 96.4       | **92.9** | **97.5** |
| vdr-2b-v1 (768 image tokens)            | **93.4** | **83.4**     | **96.9**   | **97.2**   | 92.6     | 96.8     |

vdr-2b-v1 matches the performance of the base model on vidore synthetic datasets, while only using 30% of the image tokens (768 vs. 2560). This results in 3x faster inference and much lower VRAM usage.