File size: 1,852 Bytes
8902dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d3693
 
 
8902dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d3693
 
 
 
 
8902dde
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: distilbert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-multilingual-cased-finetuned-psi-classification-oversampled-gpu
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-multilingual-cased-finetuned-psi-classification-oversampled-gpu

This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0669
- Accuracy: 0.9855
- F1: 0.9855

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.402         | 1.0   | 1076 | 0.1036          | 0.9710   | 0.9705 |
| 0.1002        | 2.0   | 2152 | 0.0758          | 0.9779   | 0.9775 |
| 0.0517        | 3.0   | 3228 | 0.0839          | 0.9779   | 0.9780 |
| 0.0363        | 4.0   | 4304 | 0.0718          | 0.9855   | 0.9855 |
| 0.0307        | 5.0   | 5380 | 0.0669          | 0.9855   | 0.9855 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1