liuyanchen1015
commited on
Commit
·
b5e618e
1
Parent(s):
e5a8a99
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: Finetuned_FLAN-T5_VALUE_finetuning_lr3e-4
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# Finetuned_FLAN-T5_VALUE_finetuning_lr3e-4
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [liuyanchen1015/FLAN-T5_GLUE_finetuning_lr3e-4](https://huggingface.co/liuyanchen1015/FLAN-T5_GLUE_finetuning_lr3e-4) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1268
|
20 |
+
- Accuracy: 0.8823
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 64
|
41 |
+
- eval_batch_size: 64
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 5.0
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
51 |
+
| 0.06 | 0.17 | 2500 | 0.0907 | 0.8692 |
|
52 |
+
| 0.0623 | 0.34 | 5000 | 0.0920 | 0.8698 |
|
53 |
+
| 0.0629 | 0.51 | 7500 | 0.0875 | 0.8701 |
|
54 |
+
| 0.0641 | 0.68 | 10000 | 0.0892 | 0.8709 |
|
55 |
+
| 0.0634 | 0.85 | 12500 | 0.0908 | 0.8696 |
|
56 |
+
| 0.0627 | 1.02 | 15000 | 0.0939 | 0.8723 |
|
57 |
+
| 0.0467 | 1.18 | 17500 | 0.0949 | 0.8738 |
|
58 |
+
| 0.0485 | 1.35 | 20000 | 0.0954 | 0.8731 |
|
59 |
+
| 0.0496 | 1.52 | 22500 | 0.0909 | 0.8729 |
|
60 |
+
| 0.0497 | 1.69 | 25000 | 0.0942 | 0.8765 |
|
61 |
+
| 0.0509 | 1.86 | 27500 | 0.0925 | 0.8753 |
|
62 |
+
| 0.047 | 2.03 | 30000 | 0.1024 | 0.8781 |
|
63 |
+
| 0.0346 | 2.2 | 32500 | 0.1011 | 0.8791 |
|
64 |
+
| 0.0364 | 2.37 | 35000 | 0.1013 | 0.8773 |
|
65 |
+
| 0.0359 | 2.54 | 37500 | 0.1013 | 0.8785 |
|
66 |
+
| 0.0374 | 2.71 | 40000 | 0.1002 | 0.8785 |
|
67 |
+
| 0.0367 | 2.88 | 42500 | 0.1015 | 0.8787 |
|
68 |
+
| 0.0338 | 3.05 | 45000 | 0.1199 | 0.8779 |
|
69 |
+
| 0.0253 | 3.22 | 47500 | 0.1191 | 0.8791 |
|
70 |
+
| 0.0256 | 3.38 | 50000 | 0.1165 | 0.8787 |
|
71 |
+
| 0.0257 | 3.55 | 52500 | 0.1136 | 0.88 |
|
72 |
+
| 0.0265 | 3.72 | 55000 | 0.1092 | 0.881 |
|
73 |
+
| 0.026 | 3.89 | 57500 | 0.1131 | 0.8814 |
|
74 |
+
| 0.0233 | 4.06 | 60000 | 0.1270 | 0.8798 |
|
75 |
+
| 0.018 | 4.23 | 62500 | 0.1291 | 0.8808 |
|
76 |
+
| 0.0191 | 4.4 | 65000 | 0.1269 | 0.8814 |
|
77 |
+
| 0.0191 | 4.57 | 67500 | 0.1279 | 0.8816 |
|
78 |
+
| 0.0186 | 4.74 | 70000 | 0.1264 | 0.8824 |
|
79 |
+
| 0.0184 | 4.91 | 72500 | 0.1268 | 0.8823 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.26.1
|
85 |
+
- Pytorch 1.13.0+cu117
|
86 |
+
- Datasets 2.10.1
|
87 |
+
- Tokenizers 0.12.1
|