carenet-v2 / pipeline.py
liranzxc's picture
add
02a3457
raw
history blame contribute delete
806 Bytes
from typing import List
from sentence_transformers import SentenceTransformer
import os
class PreTrainedPipeline:
def __init__(self, path=""):
"""
Initialize model
"""
self.model = SentenceTransformer(os.path.join(path))
# os.path.join(path, 'quora-distilbert-multilingual')
#"sentence-transformers/quora-distilbert-multilingual"
#)
def __call__(self, inputs: str) -> List[float]:
"""
Args:
inputs (:obj:`str`):
a string to get the features of.
Return:
A :obj:`list` of floats: The features computed by the model.
"""
return self.model.encode(inputs).tolist()
#
if __name__ == "__main__":
xx = PreTrainedPipeline()
print(xx.__call__("hei"))