"""Medical Image Classification model wrapper class that loads the model, preprocesses inputs and performs inference.""" import torch from PIL import Image import pandas as pd from typing import List, Tuple import os import tempfile import base64 import io from MedImageInsight.UniCLModel import build_unicl_model from MedImageInsight.Utils.Arguments import load_opt_from_config_files from MedImageInsight.ImageDataLoader import build_transforms from MedImageInsight.LangEncoder import build_tokenizer class MedImageInsight: """Wrapper class for medical image classification model.""" def __init__( self, model_dir: str, vision_model_name: str, language_model_name: str ) -> None: """Initialize the medical image classifier. Args: model_dir: Directory containing model files and config vision_model_name: Name of the vision model language_model_name: Name of the language model """ self.model_dir = model_dir self.vision_model_name = vision_model_name self.language_model_name = language_model_name self.model = None self.device = None self.tokenize = None self.preprocess = None self.opt = None def load_model(self) -> None: """Load the model and necessary components.""" try: # Load configuration config_path = os.path.join(self.model_dir, 'config.yaml') self.opt = load_opt_from_config_files([config_path]) # Set paths self.opt['LANG_ENCODER']['PRETRAINED_TOKENIZER'] = os.path.join( self.model_dir, 'language_model', 'clip_tokenizer_4.16.2' ) self.opt['UNICL_MODEL']['PRETRAINED'] = os.path.join( self.model_dir, 'vision_model', self.vision_model_name ) # Initialize components self.preprocess = build_transforms(self.opt, False) self.model = build_unicl_model(self.opt) # Set device self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model.to(self.device) # Load tokenizer self.tokenize = build_tokenizer(self.opt['LANG_ENCODER']) self.max_length = self.opt['LANG_ENCODER']['CONTEXT_LENGTH'] print(f"Model loaded successfully on device: {self.device}") except Exception as e: print("Failed to load the model:") raise e @staticmethod def decode_base64_image(base64_str: str) -> Image.Image: """Decode base64 string to PIL Image and ensure RGB format. Args: base64_str: Base64 encoded image string Returns: PIL Image object in RGB format """ try: # Remove header if present if ',' in base64_str: base64_str = base64_str.split(',')[1] image_bytes = base64.b64decode(base64_str) image = Image.open(io.BytesIO(image_bytes)) # Convert grayscale (L) or grayscale with alpha (LA) to RGB if image.mode in ('L', 'LA'): image = image.convert('RGB') return image except Exception as e: raise ValueError(f"Failed to decode base64 image: {str(e)}") def predict(self, images: List[str], labels: List[str], multilabel: bool = False) -> List[dict]: """Perform zero shot classification on the input images. Args: images: List of base64 encoded image strings labels: List of candidate labels for classification Returns: DataFrame with columns ["probabilities", "labels"] """ if not self.model: raise RuntimeError("Model not loaded. Call load_model() first.") if not labels: raise ValueError("No labels provided") # Create temporary directory for processing with tempfile.TemporaryDirectory() as tmp_dir: # Process images image_list = [] for img_base64 in images: try: img = self.decode_base64_image(img_base64) image_list.append(img) except Exception as e: raise ValueError(f"Failed to process image: {str(e)}") # Run inference probs = self.run_inference_batch(image_list, labels, multilabel) probs_np = probs.cpu().numpy() results = [] for prob_row in probs_np: # Create label-prob pairs and sort by probability label_probs = [(label, float(prob)) for label, prob in zip(labels, prob_row)] label_probs.sort(key=lambda x: x[1], reverse=True) # Create ordered dictionary from sorted pairs results.append({ label: prob for label, prob in label_probs }) return results def encode(self, images: List[str] = None, texts: List[str] = None): output = { "image_embeddings" : None, "text_embeddings" : None, } if not self.model: raise RuntimeError("Model not loaded. Call load_model() first.") if not images and not texts: raise ValueError("You must provide either images or texts") if images is not None: with tempfile.TemporaryDirectory() as tmp_dir: # Process images image_list = [] for img_base64 in images: try: img = self.decode_base64_image(img_base64) image_list.append(img) except Exception as e: raise ValueError(f"Failed to process image: {str(e)}") images = torch.stack([self.preprocess(img) for img in image_list]).to(self.device) with torch.no_grad(): output["image_embeddings"] = self.model.encode_image(images).cpu().numpy() if texts is not None: text_tokens = self.tokenize( texts, padding='max_length', max_length=self.max_length, truncation=True, return_tensors='pt' ) # Move text tensors to the correct device text_tokens = {k: v.to(self.device) for k, v in text_tokens.items()} output["text_embeddings"] = self.model.encode_text(text_tokens).detach().cpu().numpy() return output def run_inference_batch( self, images: List[Image.Image], texts: List[str], multilabel: bool = False ) -> torch.Tensor: """Perform inference on batch of input images. Args: images: List of PIL Image objects texts: List of text labels multilabel: If True, use sigmoid for multilabel classification. If False, use softmax for single-label classification. Returns: Tensor of prediction probabilities """ # Prepare inputs images = torch.stack([self.preprocess(img) for img in images]).to(self.device) # Process text text_tokens = self.tokenize( texts, padding='max_length', max_length=self.max_length, truncation=True, return_tensors='pt' ) # Move text tensors to the correct device text_tokens = {k: v.to(self.device) for k, v in text_tokens.items()} # Run inference with torch.no_grad(): outputs = self.model(image=images, text=text_tokens) logits_per_image = outputs[0] @ outputs[1].t() * outputs[2] if multilabel: # Use sigmoid for independent probabilities per label probs = torch.sigmoid(logits_per_image) else: # Use softmax for single-label classification probs = logits_per_image.softmax(dim=1) return probs