medical
File size: 11,593 Bytes
5ceacbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import pathlib
import tempfile
import logging
import os
import copy

import torch
from torch import nn

from timm.models.layers import trunc_normal_

from .ImageEncoder import build_image_encoder
from .LangEncoder import build_lang_encoder
from .LangEncoder import build_tokenizer

import mup.init
from mup import set_base_shapes

from safetensors.torch import load_file


logger = logging.getLogger(__name__)


class UniCLModel(nn.Module):
    def __init__(self, config: dict):
        super().__init__()

        self.conf_lang_encoder = config['LANG_ENCODER']
        self.tokenizer = build_tokenizer(self.conf_lang_encoder)

        self.lang_encoder = build_lang_encoder(self.conf_lang_encoder, self.tokenizer, config['VERBOSE'])

        dim_projection = config['UNICL_MODEL']['DIM_PROJECTION']
        if hasattr(self.lang_encoder, 'dim_out'):
            dim_out = self.lang_encoder.dim_out
        else:
            with torch.no_grad():
                dim_out = self.lang_encoder(
                    torch.zeros(1,1).type(torch.LongTensor)
                )['last_hidden_state'].size(2)

        self.lang_projection = nn.Parameter(torch.empty(dim_out, dim_projection))

        self.conf_image_encoder = config['IMAGE_ENCODER']
        self.image_encoder = build_image_encoder(self.conf_image_encoder, config['VERBOSE'])

        self.image_projection = nn.Parameter(
            torch.empty(self.image_encoder.dim_out, dim_projection)
        )

        self.logit_scale = nn.Parameter(torch.ones([]))

        if torch.cuda.is_available():
            self.device = torch.device(type="cuda", index=0)
        else:
            self.device = torch.device(type="cpu")

    def custom_init_weights(self, use_original_init=True):
        self.use_original_init = use_original_init
        logger.info('Custom init: {}'.format('original init' if self.use_original_init else 'muP init'))

        if self.use_original_init:
            # Original initialization.
            # Note: This is not SP init. We do not implement SP init here.
            custom_trunc_normal_ = trunc_normal_  # Note: This should be the same as torch.nn.init.trunc_normal_
        else:
            # muP.
            custom_trunc_normal_ = mup.init.trunc_normal_

        custom_trunc_normal_(self.lang_projection, std=.02)
        custom_trunc_normal_(self.image_projection, std=.02)

    def _convert_old_weights(self, model_dict):
        model_dict_updated = {}
        for k, v in model_dict.items():
            if k.startswith('visual.'):
                model_dict_updated['image_encoder.'+k[7:]] = v
            elif k.startswith('text.'):
                model_dict_updated['lang_encoder.'+k[5:]] = v
            elif k == 'vision_projection':
                model_dict_updated['image_projection'] = v
            elif k == 'text_projection':
                model_dict_updated['lang_projection'] = v
            else:
                model_dict_updated[k] = v

        return model_dict_updated

    def from_pretrained(self, pretrained='', pretrained_layers=[], verbose=True):
        if not os.path.isfile(pretrained):
            logger.warning(f'=> Pretrained model ({pretrained}) is not a file, skip init weight')
            return

        ## Load SafeTensors Version of Pretrained Model
        pretrained_dict = load_file(pretrained)
        logger.info(f'=> Loading pretrained model {pretrained}')
        model_dict = self.state_dict()
        pretrained_dict = self._convert_old_weights(pretrained_dict)
        ## To ensure cuda is mapped to all weights in the SafeTensors version model
        pretrained_dict = {
            k: v.to(self.device) for k, v in pretrained_dict.items()
        }
        need_init_state_dict = {}
        image_encoder_state_dict = {}
        for k, v in pretrained_dict.items():
            need_init = (
                k.split('.')[0] in pretrained_layers
                or pretrained_layers[0] == '*'
            )

            if need_init:
                if k.startswith('image_encoder.'):
                    image_encoder_state_dict[k] = v.to(self.device)
                else:
                    if verbose:
                        logger.info(f'=> init {k} from {pretrained}')

                    if 'positional_embedding' in k and v.size() != model_dict[k].size():
                        positional_embedding_pretrained = v
                        positional_embedding_current = model_dict[k]
                        L1, nH1 = positional_embedding_pretrained.size()
                        L2, nH2 = positional_embedding_current.size()
                        if nH1 != nH2:
                            logger.info(f"Error in loading {k}, passing")
                        else:
                            if L1 != L2:
                                logger.info(
                                    '=> load_pretrained: resized variant: {} to {}'
                                        .format((L1, nH1), (L2, nH2))
                                )

                                posemb = positional_embedding_pretrained.float()
                                posemb_grid = posemb.unsqueeze(dim=0).permute(0, 2, 1)
                                posemb_grid = torch.nn.functional.interpolate(posemb_grid, size=L2, mode='linear')
                                posemb_grid = posemb_grid.permute(0, 2, 1).squeeze(dim=0)
                                v = posemb_grid

                    need_init_state_dict[k] = v.to(self.device)
        self.image_encoder.from_state_dict(image_encoder_state_dict, ['*'], verbose)
        self.load_state_dict(need_init_state_dict, strict=False)

    @torch.jit.ignore
    def no_weight_decay(self):
        no_weight_decay = {'logit_scale'}
        if hasattr(self.lang_encoder, 'no_weight_decay'):
            for k in self.lang_encoder.no_weight_decay():
                no_weight_decay.add('lang_encoder.'+k)

        if hasattr(self.image_encoder, 'no_weight_decay'):
            for k in self.visual.no_weight_decay():
                no_weight_decay.add('image_encoder.'+k)

        return no_weight_decay

    @property
    def dtype(self):
        return self.logit_scale.dtype

    def encode_image(self, image, norm=True):
        x = self.image_encoder.forward_features(image)
        x = x @ self.image_projection

        if norm:
            x = x / x.norm(dim=-1, keepdim=True)

        return x

    def encode_text(self, text, norm=True):
        x = self.lang_encoder(**text)
        x = x['last_hidden_state']

        if self.conf_lang_encoder['TOKENIZER'] == 'clip':
            x = x[torch.arange(x.size(0)), text['input_ids'].argmax(dim=-1)]
        else:
            x = x[:, 0]

        x = x @ self.lang_projection

        if norm:
            x = x / x.norm(dim=-1, keepdim=True)

        return x

    def forward(self, image, text):
        features_image = self.encode_image(image)
        features_text = self.encode_text(text)

        # cosine similarity as logits
        T = self.logit_scale.exp()

        return features_image, features_text, T


def create_model(config):
    model = UniCLModel(config)
    return model


def create_mup_model(config):
    def gen_config(config, wm):
        # TODO: Currently only support the case that all UniCL, lang encoder, and image encoder use
        #       mu parameterization. This requirement can be relaxed.
        assert (not config['UNICL_MODEL']['STANDPARAM']) and \
               (not config['LANG_ENCODER']['STANDPARAM']) and \
               (not config['IMAGE_ENCODER']['SPEC']['STANDPARAM'])
        new_config = copy.deepcopy(config)
        logger.info(f'Generate config with width mult = {wm}:')

        # Generate config for UniCL head.
        new_config_section = new_config['UNICL_MODEL']
        new_config_section['STANDPARAM'] = True  # Use standard parameterization when determining base shapes.
        for name in ['DIM_PROJECTION']:
            base_name = 'BASE_' + name
            new_values = round(new_config_section[base_name] * wm)  # New value = base value * width multiplier.
            logger.info(f'config["UNICL_MODEL"]["{name}"]: {new_config_section[name]} -> {new_values}')
            new_config_section[name] = new_values

        # Generate config for lang encoder.
        new_config_section = new_config['LANG_ENCODER']
        new_config_section['STANDPARAM'] = True
        for name in ['WIDTH', 'HEADS']:
            base_name = 'BASE_' + name
            new_values = round(new_config_section[base_name] * wm)  # New value = base value * width multiplier.
            logger.info(f'config["LANG_ENCODER"]["{name}"]: {new_config_section[name]} -> {new_values}')
            new_config_section[name] = new_values

        # Generate config for image encoder.
        new_config_section = new_config['IMAGE_ENCODER']['SPEC']
        new_config_section['STANDPARAM'] = True
        for name in ['DIM_EMBED', 'NUM_HEADS', 'NUM_GROUPS']:
            base_name = 'BASE_' + name
            new_values = [round(base_value * wm) for base_value in new_config_section[base_name]]  # New value = base value * width multiplier.
            logger.info(f'config["IMAGE_ENCODER"]["SPEC"]["{name}"]: {new_config_section[name]} -> {new_values}')
            new_config_section[name] = new_values

        return new_config

    logger.info('muP: Create models and set base shapes')
    logger.info('=> Create model')
    model = create_model(config)
    # Temporarily remove the lang and image encoders from model to prevent from
    # setting the base shape for these encoders again.
    lang_encoder, image_encoder = model.lang_encoder, model.image_encoder
    model.lang_encoder, model.image_encoder = None, None

    logger.info('=> Create base model')
    base_config = gen_config(config, wm=1.0)
    base_model = create_model(base_config)
    del base_model.lang_encoder, base_model.image_encoder

    logger.info('=> Create delta model')
    delta_config = gen_config(config, wm=2.0)
    delta_model = create_model(delta_config)
    del delta_model.lang_encoder, delta_model.image_encoder

    logger.info('=> Set base shapes in model for training')
    set_base_shapes(model, base=base_model, delta=delta_model)

    # Restore the lang and image encoders in the model.
    model.lang_encoder, model.image_encoder = lang_encoder, image_encoder

    return model


def build_unicl_model(config, **kwargs):
    standparam = config['UNICL_MODEL'].get('STANDPARAM', True)

    if standparam:
        logger.info('Create model with standard parameterization')
        model = create_model(config)

        use_original_init = True
    else:
        logger.info('Create model with mu parameterization')
        model = create_mup_model(config)
        use_original_init = False

    # Initialize other parameters.
    model.custom_init_weights(use_original_init=use_original_init)

    if config['UNICL_MODEL']['LOAD_PRETRAINED']:
        pretrained_path = config['UNICL_MODEL']['PRETRAINED']
        from .Distributed.Utils import is_valid_url, download_file
        if is_valid_url(pretrained_path):
            with tempfile.TemporaryDirectory() as tmp_path:
                file_local_path = pathlib.Path(tmp_path) / 'base_model.pt'
                download_file(pretrained_path, file_local_path)
                model.from_pretrained(str(file_local_path), config['UNICL_MODEL']['PRETRAINED_LAYERS'], config['VERBOSE'])
        else:
            model.from_pretrained(pretrained_path, config['UNICL_MODEL']['PRETRAINED_LAYERS'], config['VERBOSE'])

    return model