likenneth commited on
Commit
29e54eb
·
1 Parent(s): aaae7c6

Upload tokenizer

Browse files
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenization_llama.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ """Tokenization classes for LLaMA."""
22
+ import os
23
+ import re
24
+ from shutil import copyfile
25
+ from typing import Any, Dict, List, Optional, Tuple
26
+
27
+ import sentencepiece as spm
28
+
29
+ from transformers.tokenization_utils import PreTrainedTokenizer
30
+ from transformers.utils import logging
31
+
32
+
33
+ logger = logging.get_logger(__name__)
34
+
35
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
36
+
37
+ PRETRAINED_VOCAB_FILES_MAP = {}
38
+
39
+
40
+ class LLaMATokenizer(PreTrainedTokenizer):
41
+ """
42
+ Construct a LLaMA tokenizer. Based on byte-level Byte-Pair-Encoding.
43
+
44
+ Args:
45
+ vocab_file (`str`):
46
+ Path to the vocabulary file.
47
+ """
48
+
49
+ vocab_files_names = VOCAB_FILES_NAMES
50
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
51
+ model_input_names = ["input_ids", "attention_mask"]
52
+
53
+ def __init__(
54
+ self,
55
+ vocab_file,
56
+ unk_token="",
57
+ bos_token=" ⁇ ",
58
+ eos_token="",
59
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
60
+ add_bos_token=True,
61
+ add_eos_token=False,
62
+ **kwargs,
63
+ ):
64
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
65
+ super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
66
+ self.vocab_file = vocab_file
67
+ self.add_bos_token = add_bos_token
68
+ self.add_eos_token = add_eos_token
69
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
70
+ self.sp_model.Load(vocab_file)
71
+
72
+ """ Initialisation"""
73
+
74
+ @property
75
+ def vocab_size(self):
76
+ """Returns vocab size"""
77
+ return self.sp_model.get_piece_size()
78
+
79
+ @property
80
+ def bos_token_id(self) -> Optional[int]:
81
+ return self.sp_model.bos_id()
82
+
83
+ @property
84
+ def eos_token_id(self) -> Optional[int]:
85
+ return self.sp_model.eos_id()
86
+
87
+ def get_vocab(self):
88
+ """Returns vocab as a dict"""
89
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
90
+ vocab.update(self.added_tokens_encoder)
91
+ return vocab
92
+
93
+ def _tokenize(self, text):
94
+ """Returns a tokenized string."""
95
+ return self.sp_model.encode(text, out_type=str)
96
+
97
+ def _convert_token_to_id(self, token):
98
+ """Converts a token (str) in an id using the vocab."""
99
+ return self.sp_model.piece_to_id(token)
100
+
101
+ def _convert_id_to_token(self, index):
102
+ """Converts an index (integer) in a token (str) using the vocab."""
103
+ token = self.sp_model.IdToPiece(index)
104
+ return token
105
+
106
+ def convert_tokens_to_string(self, tokens):
107
+ """Converts a sequence of tokens (string) in a single string."""
108
+ current_sub_tokens = []
109
+ out_string = ""
110
+ prev_is_special = False
111
+ for token in tokens:
112
+ # make sure that special tokens are not decoded using sentencepiece model
113
+ if token in self.all_special_tokens:
114
+ if not prev_is_special:
115
+ out_string += " "
116
+ out_string += self.sp_model.decode(current_sub_tokens) + token
117
+ prev_is_special = True
118
+ current_sub_tokens = []
119
+ else:
120
+ current_sub_tokens.append(token)
121
+ prev_is_special = False
122
+ out_string += self.sp_model.decode(current_sub_tokens)
123
+ return out_string.strip()
124
+
125
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
126
+ """
127
+ Save the vocabulary and special tokens file to a directory.
128
+
129
+ Args:
130
+ save_directory (`str`):
131
+ The directory in which to save the vocabulary.
132
+
133
+ Returns:
134
+ `Tuple(str)`: Paths to the files saved.
135
+ """
136
+ if not os.path.isdir(save_directory):
137
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
138
+ return
139
+ out_vocab_file = os.path.join(
140
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
141
+ )
142
+
143
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
144
+ copyfile(self.vocab_file, out_vocab_file)
145
+ elif not os.path.isfile(self.vocab_file):
146
+ with open(out_vocab_file, "wb") as fi:
147
+ content_spiece_model = self.sp_model.serialized_model_proto()
148
+ fi.write(content_spiece_model)
149
+
150
+ return (out_vocab_file,)
151
+
152
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
153
+ if self.add_bos_token:
154
+ bos_token_ids = [self.bos_token_id]
155
+ else:
156
+ bos_token_ids = []
157
+
158
+ output = bos_token_ids + token_ids_0
159
+
160
+ if token_ids_1 is not None:
161
+ output = output + token_ids_1
162
+
163
+ if self.add_eos_token:
164
+ output = output + [self.eos_token_id]
165
+
166
+ return output
167
+
168
+ def get_special_tokens_mask(
169
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
170
+ ) -> List[int]:
171
+ """
172
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
173
+ special tokens using the tokenizer `prepare_for_model` method.
174
+
175
+ Args:
176
+ token_ids_0 (`List[int]`):
177
+ List of IDs.
178
+ token_ids_1 (`List[int]`, *optional*):
179
+ Optional second list of IDs for sequence pairs.
180
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
181
+ Whether or not the token list is already formatted with special tokens for the model.
182
+
183
+ Returns:
184
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
185
+ """
186
+ if already_has_special_tokens:
187
+ return super().get_special_tokens_mask(
188
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
189
+ )
190
+
191
+ if token_ids_1 is None:
192
+ return [1] + ([0] * len(token_ids_0)) + [1]
193
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
194
+
195
+ def create_token_type_ids_from_sequences(
196
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
197
+ ) -> List[int]:
198
+ """
199
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
200
+ use of token type ids, therefore a list of zeros is returned.
201
+
202
+ Args:
203
+ token_ids_0 (`List[int]`):
204
+ List of IDs.
205
+ token_ids_1 (`List[int]`, *optional*):
206
+ Optional second list of IDs for sequence pairs.
207
+
208
+ Returns:
209
+ `List[int]`: List of zeros.
210
+ """
211
+ eos = [self.eos_token_id]
212
+
213
+ if token_ids_1 is None:
214
+ return len(token_ids_0 + eos) * [0]
215
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_llama.LLaMATokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "bos_token": {
9
+ "__type": "AddedToken",
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "clean_up_tokenization_spaces": false,
17
+ "eos_token": {
18
+ "__type": "AddedToken",
19
+ "content": "</s>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "legacy": false,
26
+ "model_max_length": 1000000000000000019884624838656,
27
+ "pad_token": null,
28
+ "special_tokens_map_file": "/ssd4tb/huggingface_cache/hub/models--meta-llama--Llama-2-7b-chat-hf/snapshots/0d52e200fc7ba73089b86c1b5727267dccf65311/special_tokens_map.json",
29
+ "tokenizer_class": "LLaMATokenizer",
30
+ "unk_token": {
31
+ "__type": "AddedToken",
32
+ "content": "<unk>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ },
38
+ "use_fast": false
39
+ }