File size: 1,300 Bytes
ea63c7c 72ed59b ea63c7c 72ed59b ea63c7c 72ed59b 7390f06 ea63c7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: I love AutoTrain 🤗
datasets:
- librarian-bots/model_card_dataset_mentions
co2_eq_emissions:
emissions: 0.12753465619151655
license: mit
library_name: transformers
pipeline_tag: text-classification
metrics:
- f1
- accuracy
- recall
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 3522695252
- CO2 Emissions (in grams): 0.1275
## Validation Metrics
- Loss: 0.000
- Accuracy: 1.000
- Precision: 1.000
- Recall: 1.000
- AUC: 1.000
- F1: 1.000
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fdavanstrien%2Fautotrain-dataset-mentions-160223-3522695252%3C%2Fspan%3E
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("davanstrien/autotrain-dataset-mentions-160223-3522695252", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-dataset-mentions-160223-3522695252", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
``` |