File size: 1,300 Bytes
ea63c7c
 
 
 
 
 
 
72ed59b
ea63c7c
72ed59b
ea63c7c
 
72ed59b
 
 
7390f06
 
 
 
ea63c7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: I love AutoTrain 🤗
datasets:
- librarian-bots/model_card_dataset_mentions
co2_eq_emissions:
  emissions: 0.12753465619151655
license: mit
library_name: transformers
pipeline_tag: text-classification
metrics:
- f1
- accuracy
- recall
---

# Model Trained Using AutoTrain

- Problem type: Binary Classification
- Model ID: 3522695252
- CO2 Emissions (in grams): 0.1275

## Validation Metrics

- Loss: 0.000
- Accuracy: 1.000
- Precision: 1.000
- Recall: 1.000
- AUC: 1.000
- F1: 1.000

## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fdavanstrien%2Fautotrain-dataset-mentions-160223-3522695252%3C%2Fspan%3E
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("davanstrien/autotrain-dataset-mentions-160223-3522695252", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-dataset-mentions-160223-3522695252", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
```