lewiswatson commited on
Commit
b1e89c1
·
1 Parent(s): 56fda8d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -13
README.md CHANGED
@@ -4,9 +4,26 @@ tags:
4
  - generated_from_trainer
5
  datasets:
6
  - emotion
 
 
 
7
  model-index:
8
  - name: distilbert-base-uncased-finetuned-emotion
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,14 +33,9 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
18
  It achieves the following results on the evaluation set:
19
- - eval_loss: 0.2242
20
- - eval_accuracy: 0.927
21
- - eval_f1: 0.9271
22
- - eval_runtime: 89.316
23
- - eval_samples_per_second: 22.392
24
- - eval_steps_per_second: 0.358
25
- - epoch: 1.0
26
- - step: 250
27
 
28
  ## Model description
29
 
@@ -50,9 +62,17 @@ The following hyperparameters were used during training:
50
  - lr_scheduler_type: linear
51
  - num_epochs: 2
52
 
 
 
 
 
 
 
 
 
53
  ### Framework versions
54
 
55
- - Transformers 4.16.2
56
- - Pytorch 1.10.2+cpu
57
- - Datasets 1.18.3
58
- - Tokenizers 0.11.0
 
4
  - generated_from_trainer
5
  datasets:
6
  - emotion
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
  model-index:
11
  - name: distilbert-base-uncased-finetuned-emotion
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: emotion
18
+ type: emotion
19
+ args: default
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.918
24
+ - name: F1
25
+ type: f1
26
+ value: 0.9182094401352938
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.2287
37
+ - Accuracy: 0.918
38
+ - F1: 0.9182
 
 
 
 
 
39
 
40
  ## Model description
41
 
 
62
  - lr_scheduler_type: linear
63
  - num_epochs: 2
64
 
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
69
+ | 0.8478 | 1.0 | 250 | 0.3294 | 0.9015 | 0.8980 |
70
+ | 0.2616 | 2.0 | 500 | 0.2287 | 0.918 | 0.9182 |
71
+
72
+
73
  ### Framework versions
74
 
75
+ - Transformers 4.17.0
76
+ - Pytorch 1.10.0+cu111
77
+ - Datasets 1.18.4
78
+ - Tokenizers 0.11.6