File size: 1,950 Bytes
a38a9df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4365be
0e7e121
b4365be
a38a9df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77ebd85
a38a9df
 
 
 
 
 
 
 
 
 
 
b4365be
 
 
 
 
 
 
 
a38a9df
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: cc-by-4.0
base_model: EMBEDDIA/crosloengual-bert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: fine_tuned_cb_croslo
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine_tuned_cb_croslo

This model is a fine-tuned version of [EMBEDDIA/crosloengual-bert](https://huggingface.co/EMBEDDIA/crosloengual-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3249
- Accuracy: 0.6818
- F1: 0.6390

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
| 0.7054        | 3.5714  | 50   | 1.4024          | 0.3182   | 0.1536 |
| 0.3117        | 7.1429  | 100  | 1.0030          | 0.6818   | 0.6383 |
| 0.0286        | 10.7143 | 150  | 1.0108          | 0.7273   | 0.6791 |
| 0.0038        | 14.2857 | 200  | 1.1886          | 0.6818   | 0.6390 |
| 0.0025        | 17.8571 | 250  | 1.2342          | 0.6818   | 0.6390 |
| 0.0019        | 21.4286 | 300  | 1.2576          | 0.7273   | 0.6791 |
| 0.0015        | 25.0    | 350  | 1.2963          | 0.6818   | 0.6390 |
| 0.0015        | 28.5714 | 400  | 1.3249          | 0.6818   | 0.6390 |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.19.1