File size: 5,285 Bytes
8bd1ce8
ac8ea64
 
 
 
8bd1ce8
 
 
 
 
ac8ea64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bd1ce8
 
 
 
 
 
 
e55e196
 
 
 
8bd1ce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac8ea64
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- nbeerbower/Gemma2-Gutenberg-Doppel-9B
- ifable/gemma-2-Ifable-9B
- unsloth/gemma-2-9b-it
- wzhouad/gemma-2-9b-it-WPO-HB
model-index:
- name: Gemma-2-Ataraxy-v3i-9B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 42.03
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v3i-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 38.24
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v3i-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.15
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v3i-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.4
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v3i-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 1.76
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v3i-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 35.18
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v3i-9B
      name: Open LLM Leaderboard
---
# Gemma-2-Ataraxy-v3i-9B

Another experimental model. This one is in the vein of advanced 2.1, but we replace the simpo model used in the original recipe, with a different simpo model, that was more finetuned with writing in mind, ifable. We also use another writing model, which was trained on gutenberg. We use this one at a higher density because SPPO, on paper is the superior training method, to simpo, and quite frankly, ifable is finicky to work with, and can end up being a little too strong.. or heavy in merges. It's a very strong writer but it introduced quite a bit slop in v2. 

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## GGUF

https://huggingface.co/lemon07r/Gemma-2-Ataraxy-v3i-9B-Q8_0-GGUF

## Merge Details
### Merge Method

This model was merged using the della merge method using [unsloth/gemma-2-9b-it](https://huggingface.co/unsloth/gemma-2-9b-it) as a base.

### Models Merged

The following models were included in the merge:
* [nbeerbower/Gemma2-Gutenberg-Doppel-9B](https://huggingface.co/nbeerbower/Gemma2-Gutenberg-Doppel-9B)
* [ifable/gemma-2-Ifable-9B](https://huggingface.co/ifable/gemma-2-Ifable-9B)
* [wzhouad/gemma-2-9b-it-WPO-HB](https://huggingface.co/wzhouad/gemma-2-9b-it-WPO-HB)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
base_model: unsloth/gemma-2-9b-it
dtype: bfloat16
merge_method: della
parameters:
  epsilon: 0.1
  int8_mask: 1.0
  lambda: 1.0
  normalize: 1.0
slices:
- sources:
  - layer_range: [0, 42]
    model: unsloth/gemma-2-9b-it
  - layer_range: [0, 42]
    model: wzhouad/gemma-2-9b-it-WPO-HB
    parameters:
      density: 0.55
      weight: 0.6
  - layer_range: [0, 42]
    model: nbeerbower/Gemma2-Gutenberg-Doppel-9B
    parameters:
      density: 0.35
      weight: 0.6
  - layer_range: [0, 42]
    model: ifable/gemma-2-Ifable-9B
    parameters:
      density: 0.25
      weight: 0.4
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lemon07r__Gemma-2-Ataraxy-v3i-9B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |21.29|
|IFEval (0-Shot)    |42.03|
|BBH (3-Shot)       |38.24|
|MATH Lvl 5 (4-Shot)| 0.15|
|GPQA (0-shot)      |10.40|
|MuSR (0-shot)      | 1.76|
|MMLU-PRO (5-shot)  |35.18|