File size: 10,298 Bytes
f0db978 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
main: build = 3056 (0c27e6f6)
main: built with cc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 for x86_64-linux-gnu
main: seed = 1717159644
llama_model_loader: loaded meta data with 22 key-value pairs and 291 tensors from Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/Llama-3-8B-Instruct-MopeyMule.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = Llama-3-8B-Instruct-MopeyMule
llama_model_loader: - kv 2: llama.block_count u32 = 32
llama_model_loader: - kv 3: llama.context_length u32 = 8192
llama_model_loader: - kv 4: llama.embedding_length u32 = 4096
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 6: llama.attention.head_count u32 = 32
llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 8: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 10: general.file_type u32 = 0
llama_model_loader: - kv 11: llama.vocab_size u32 = 128256
llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 14: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 17: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 128009
llama_model_loader: - kv 20: tokenizer.chat_template str = {% set loop_messages = messages %}{% ...
llama_model_loader: - kv 21: general.quantization_version u32 = 2
llama_model_loader: - type f32: 291 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 1.5928 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128256
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: n_ctx_train = 8192
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 4
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 14336
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 8192
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 8B
llm_load_print_meta: model ftype = all F32
llm_load_print_meta: model params = 8.03 B
llm_load_print_meta: model size = 29.92 GiB (32.00 BPW)
llm_load_print_meta: general.name = Llama-3-8B-Instruct-MopeyMule
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
llm_load_tensors: ggml ctx size = 0.30 MiB
llm_load_tensors: offloading 26 repeating layers to GPU
llm_load_tensors: offloaded 26/33 layers to GPU
llm_load_tensors: CPU buffer size = 30633.02 MiB
llm_load_tensors: CUDA0 buffer size = 21632.81 MiB
.........................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA_Host KV buffer size = 12.00 MiB
llama_kv_cache_init: CUDA0 KV buffer size = 52.00 MiB
llama_new_context_with_model: KV self size = 64.00 MiB, K (f16): 32.00 MiB, V (f16): 32.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.49 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 2262.50 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 9.01 MiB
llama_new_context_with_model: graph nodes = 1030
llama_new_context_with_model: graph splits = 70
system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
compute_imatrix: tokenizing the input ..
compute_imatrix: tokenization took 47.451 ms
compute_imatrix: computing over 125 chunks with batch_size 512
compute_imatrix: 4.20 seconds per pass - ETA 8.75 minutes
[1]6.6250,[2]5.3950,[3]4.9018,[4]6.0681,[5]6.4082,[6]5.8107,[7]6.2593,[8]6.8961,[9]7.0453,
save_imatrix: stored collected data after 10 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
[10]6.4398,[11]7.0247,[12]7.7127,[13]8.3773,[14]8.9216,[15]9.2764,[16]9.6517,[17]9.8964,[18]9.6306,[19]9.1798,
save_imatrix: stored collected data after 20 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
[20]9.1053,[21]9.3150,[22]9.2083,[23]9.5868,[24]9.4919,[25]9.9523,[26]9.9423,[27]10.0086,[28]10.2563,[29]10.2846,
save_imatrix: stored collected data after 30 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
[30]10.3160,[31]9.7316,[32]9.1701,[33]8.9211,[34]8.7366,[35]8.9005,[36]9.0293,[37]8.9740,[38]9.0954,[39]9.2849,
save_imatrix: stored collected data after 40 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
[40]9.4010,[41]9.5736,[42]9.7217,[43]9.9903,[44]10.0695,[45]10.2593,[46]10.1060,[47]10.2434,[48]10.3310,[49]10.4473,
save_imatrix: stored collected data after 50 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
[50]10.3469,[51]10.4312,[52]10.6218,[53]10.7315,[54]10.8115,[55]10.9196,[56]10.9715,[57]11.0573,[58]11.0708,[59]11.1328,
save_imatrix: stored collected data after 60 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
[60]11.0697,[61]11.0061,[62]11.1104,[63]11.1580,[64]11.0483,[65]11.0238,[66]11.0130,[67]10.9197,[68]10.8712,[69]10.8102,
save_imatrix: stored collected data after 70 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
[70]10.7680,[71]10.7330,[72]10.6939,[73]10.6149,[74]10.5130,[75]10.4797,[76]10.4668,[77]10.4042,[78]10.3655,[79]10.3985,
save_imatrix: stored collected data after 80 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
[80]10.4218,[81]10.3972,[82]10.3874,[83]10.4051,[84]10.2408,[85]10.2332,[86]10.2430,[87]10.2747,[88]10.3036,[89]10.2997,
save_imatrix: stored collected data after 90 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
[90]10.2107,[91]10.1104,[92]10.0127,[93]9.9306,[94]9.8384,[95]9.7585,[96]9.7071,[97]9.7588,[98]9.8094,[99]9.9016,
save_imatrix: stored collected data after 100 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
[100]9.9891,[101]10.0616,[102]10.2103,[103]10.2458,[104]10.3093,[105]10.1944,[106]10.1989,[107]10.1521,[108]10.0846,[109]10.0087,
save_imatrix: stored collected data after 110 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
[110]10.0839,[111]10.1629,[112]10.1936,[113]10.2082,[114]10.2796,[115]10.3393,[116]10.3504,[117]10.3799,[118]10.4180,[119]10.3323,
save_imatrix: stored collected data after 120 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
[120]10.3494,[121]10.3774,[122]10.4008,[123]10.4512,[124]10.4860,[125]10.5200,
save_imatrix: stored collected data after 125 chunks in Llama-3-8B-Instruct-MopeyMule-IMat-GGUF/imatrix.dat
llama_print_timings: load time = 20701.29 ms
llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
llama_print_timings: prompt eval time = 329740.46 ms / 64000 tokens ( 5.15 ms per token, 194.09 tokens per second)
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
llama_print_timings: total time = 348274.75 ms / 64001 tokens
Final estimate: PPL = 10.5200 +/- 0.16422
|