--- license: mit library_name: transformers pipeline_tag: text-generation tags: - code - deepseek - gguf - bf16 metrics: - accuracy language: - en - zh --- # DeepSeek-V2-Chat-GGUF ![image/jpeg](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6604e5b21eb292d6df393365%2Fj_LWkNdegeMjQXuAOFZ1N.jpeg) Quantizised from [https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat) Using llama.cpp [b3026](https://github.com/ggerganov/llama.cpp/releases/tag/b3026) for quantizisation. Given the rapid release of llama.cpp builds, this will likely change over time. **If you are using an older quant, please set the metadata KV overrides below.** # Usage: **Downloading the bf16:** - Find the relevant directory - Download all files - Run merge.py - Merged GGUF should appear **Downloading the quantizations:** - Find the relevant directory - Download all files - Point to the first split (most programs should load all the splits automatically now) **Running in llama.cpp:** To start in command line chat mode (chat completion): ``` main -m DeepSeek-V2-Chat.{quant}.gguf -c {context length} --color -c (-i) ``` To use llama.cpp's OpenAI compatible server: ``` server \ -m DeepSeek-V2-Chat.{quant}.gguf \ -c {context_length} \ (--color [recommended: colored output in supported terminals]) \ (-i [note: interactive mode]) \ (--mlock [note: avoid using swap]) \ (--verbose) \ (--log-disable [note: disable logging to file, may be useful for prod]) \ (--metrics [note: prometheus compatible monitoring endpoint]) \ (--api-key [string]) \ (--port [int]) \ (--flash-attn [note: must be fully offloaded to supported GPU]) ``` Making an importance matrix: ``` imatrix \ -m DeepSeek-V2-Chat.{quant}.gguf \ -f groups_merged.txt \ --verbosity [0, 1, 2] \ -ngl {GPU offloading; must build with CUDA} \ --ofreq {recommended: 1} ``` Making a quant: ``` quantize \ DeepSeek-V2-Chat.bf16.gguf \ DeepSeek-V2-Chat.{quant}.gguf \ {quant} \ (--imatrix [file]) ``` Note: Use iMatrix quants only if you can fully offload to GPU, otherwise speed will be affected negatively. # Quants: | Quant | Status | Size | Description | KV Metadata | Weighted | Notes | |----------|-------------|-----------|--------------------------------------------|-------------|----------|-------| | BF16 | Available | 439 GB | Lossless :) | Old | No | Q8_0 is sufficient for most cases | | Q8_0 | Available | 233.27 GB | High quality *recommended* | Updated | Yes | | | Q5_K_M | Uploading | 155 GB | Medium-low quality | Updated | Yes | | | Q4_K_M | Available | 132 GB | Medium quality *recommended* | Old | No | | | Q3_K_M | Available | 104 GB | Medium-low quality | Updated | Yes | | | IQ3_XS | Available | 89.6 GB | Better than Q3_K_M | Old | Yes | | | Q2_K | Available | 80.0 GB | Low quality **not recommended** | Old | No | | | IQ2_XXS | Available | 61.5 GB | Lower quality **not recommended** | Old | Yes | | | IQ1_M | Uploading | 27.3 GB | Extremely low quality **not recommended** | Old | Yes | Testing purposes; use IQ2 at least | # Planned Quants (weighted/iMatrix): | Planned Quant | Notes | |-------------------|---------| | Q5_K_S | | | Q4_K_S | | | Q3_K_S | | | Q6_K | | | IQ4_XS | | | IQ2_XS | | | IQ2_S | | | IQ2_M | | Metadata KV overrides (pass them using `--override-kv`, can be specified multiple times): ``` deepseek2.attention.q_lora_rank=int:1536 deepseek2.attention.kv_lora_rank=int:512 deepseek2.expert_shared_count=int:2 deepseek2.expert_feed_forward_length=int:1536 deepseek2.expert_weights_scale=float:16 deepseek2.leading_dense_block_count=int:1 deepseek2.rope.scaling.yarn_log_multiplier=float:0.0707 ``` Quants with "Updated" metadata contain these parameters, so as long as you're running a supported build of llama.cpp no `--override-kv` parameters are required. A precompiled Windows AVX2 version is avaliable at `llama.cpp-039896407afd40e54321d47c5063c46a52da3e01.zip` in the root of this repo. # License: - DeepSeek license for model weights, which can be found in the `LICENSE` file in the root of this repo - MIT license for any repo code # Performance: *~1.5t/s* with Ryzen 3 3700x (96gb 3200mhz) `[Q2_K]` # iMatrix: Find `imatrix.dat` in the root of this repo, made with a `Q2_K` quant containing 62 chunks (see here for info: [https://github.com/ggerganov/llama.cpp/issues/5153#issuecomment-1913185693](https://github.com/ggerganov/llama.cpp/issues/5153#issuecomment-1913185693)) Using `groups_merged.txt`, find it here: [https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384) # Censorship: This model is a bit censored, finetuning on toxic DPO might help.