## Approach This model of [Mamba architecture](https://arxiv.org/abs/2312.00752) has been pre-trained on approximately 400B tokens of Chinese and English corpora. ## Usage ```python import torch from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel from transformers import AutoTokenizer repo_id = 'mamba-1.4b-aquila-400b' device = f"cuda:0" model = MambaLMHeadModel.from_pretrained(repo_id, dtype=torch.bfloat16, device=device) model.eval() tokenizer = AutoTokenizer.from_pretrained(repo_id) prompt = "The Spring Festival is" tokens = tokenizer.encode_plus(prompt, truncation=False)["input_ids"] tokens = torch.tensor(tokens)[None,].to(device) with torch.no_grad(): input_length = len(tokens[0]) out_ids = model.generate(input_ids=tokens, max_length=input_length+200, temperature=1.0, top_p=0.95, eos_token_id=tokenizer.eos_token_id, cg=True, top_k=15) out_ids = out_ids[0][input_length:].cpu().numpy() out_text = tokenizer.decode(out_ids.tolist()) print(out_text) ``` > the most important festival of the year for the Chinese people. It usually comes in January or February and it takes about 15 days to prepare for it. ## References The Mamba architecture was introduced in [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752). The official implementation is here: https://github.com/state-spaces/mamba/tree/main