Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Approach
|
2 |
+
This model of [Mamba architecture](https://arxiv.org/abs/2312.00752) has been pre-trained on approximately 400B tokens of Chinese and English corpora.
|
3 |
+
|
4 |
+
## Usage
|
5 |
+
```python
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
|
9 |
+
from transformers import AutoTokenizer
|
10 |
+
|
11 |
+
repo_id = 'mamba-1.4b-aquila-400b'
|
12 |
+
device = f"cuda:0"
|
13 |
+
model = MambaLMHeadModel.from_pretrained(repo_id, dtype=torch.bfloat16, device=device)
|
14 |
+
model.eval()
|
15 |
+
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
17 |
+
prompt = "The Spring Festival is"
|
18 |
+
tokens = tokenizer.encode_plus(prompt, truncation=False)["input_ids"]
|
19 |
+
tokens = torch.tensor(tokens)[None,].to(device)
|
20 |
+
with torch.no_grad():
|
21 |
+
input_length = len(tokens[0])
|
22 |
+
out_ids = model.generate(input_ids=tokens, max_length=input_length+200, temperature=1.0, top_p=0.95, eos_token_id=tokenizer.eos_token_id, cg=True, top_k=15)
|
23 |
+
out_ids = out_ids[0][input_length:].cpu().numpy()
|
24 |
+
out_text = tokenizer.decode(out_ids.tolist())
|
25 |
+
print(out_text)
|
26 |
+
```
|
27 |
+
> the most important festival of the year for the Chinese people. It usually comes in January or February and it takes about 15 days to prepare for it.
|
28 |
+
|
29 |
+
## References
|
30 |
+
|
31 |
+
The Mamba architecture was introduced in [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752).
|
32 |
+
|
33 |
+
The official implementation is here: https://github.com/state-spaces/mamba/tree/main
|