--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: edos-2023-baseline-xlm-roberta-base-label_vector results: [] --- # edos-2023-baseline-xlm-roberta-base-label_vector This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5797 - F1: 0.2746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1596 | 1.18 | 100 | 1.9772 | 0.0891 | | 1.8651 | 2.35 | 200 | 1.7720 | 0.1159 | | 1.6848 | 3.53 | 300 | 1.7193 | 0.1892 | | 1.5532 | 4.71 | 400 | 1.6794 | 0.2191 | | 1.466 | 5.88 | 500 | 1.6095 | 0.2419 | | 1.3562 | 7.06 | 600 | 1.5771 | 0.2694 | | 1.2909 | 8.24 | 700 | 1.5761 | 0.2707 | | 1.2027 | 9.41 | 800 | 1.5747 | 0.2764 | | 1.192 | 10.59 | 900 | 1.5893 | 0.2686 | | 1.1256 | 11.76 | 1000 | 1.5797 | 0.2746 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2