k4black commited on
Commit
83766c9
·
1 Parent(s): 04efec8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ model-index:
8
+ - name: edos-2023-baseline-xlm-roberta-base-label_vector
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # edos-2023-baseline-xlm-roberta-base-label_vector
16
+
17
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.1101
20
+ - F1: 0.3846
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 1e-05
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 32
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 5
46
+ - num_epochs: 10
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 2.1158 | 1.18 | 100 | 1.8798 | 0.1060 |
54
+ | 1.8474 | 2.35 | 200 | 1.6564 | 0.1666 |
55
+ | 1.7147 | 3.53 | 300 | 1.5267 | 0.2450 |
56
+ | 1.5738 | 4.71 | 400 | 1.4163 | 0.2523 |
57
+ | 1.5035 | 5.88 | 500 | 1.2823 | 0.3144 |
58
+ | 1.397 | 7.06 | 600 | 1.2035 | 0.3422 |
59
+ | 1.3436 | 8.24 | 700 | 1.1409 | 0.3740 |
60
+ | 1.2812 | 9.41 | 800 | 1.1101 | 0.3846 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.24.0
66
+ - Pytorch 1.12.1+cu113
67
+ - Datasets 2.7.1
68
+ - Tokenizers 0.13.2