--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 base_model: albert-base-v2 model-index: - name: edos-2023-baseline-albert-base-v2-label_vector results: [] --- # edos-2023-baseline-albert-base-v2-label_vector This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8762 - F1: 0.1946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1002 | 1.18 | 100 | 1.9982 | 0.1023 | | 1.7832 | 2.35 | 200 | 1.8435 | 0.1310 | | 1.57 | 3.53 | 300 | 1.8097 | 0.1552 | | 1.3719 | 4.71 | 400 | 1.8216 | 0.1631 | | 1.2072 | 5.88 | 500 | 1.8138 | 0.1811 | | 1.0186 | 7.06 | 600 | 1.8762 | 0.1946 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2